Population Biology

- Population-all of the individuals of a species that live together in one place at one time.
- Population size
 - is the number of individuals in a population.
 - has an important effect on the ability of the population to survive.
- A small population is more likely to become extinct:
 - in the case of random events or natural disaster
 - due to inbreeding where the population is more genetically alike. Recessive traits are more likely to appear.
 - with reduced variability it is harder to adapt to changes.
- Population density
 - the number of individuals in a given area.
 - if they are too far apart they may only rarely encounter one another resulting in little reproduction.
 - Population size is limited by:
 - density-dependent factors
 - Disease
 - Competition
 - Predators
 - Parasites
 - Food
 - Crowding
 - The greater the population, the greater effect these factors have.
 - Ex. Black plague in the Middle Ages more deaths in cities
 - density-independent factors
 - Volcanic eruptions
 - Temperature
 - Storms
 - Floods
 - Drought
 - Chemical pesticides
 - Major habitat disruption (as in the New Orleans flooding)
- Most are abiotic factors

Growth of Populations

• When Populations have nothing to limit their growth they will grow unchecked.

• The maximum size that a population can reach is referred to as Biotic potential

Biotic Potential

- Population Size is the present number of a certain species
- Population growth is the increase of a population size in a certain period of time
- Biotic potential is the maximum number of organisms of one species that an environment can maintain
- Limiting factors are anything that would keep a population from reaching its biotic potential
- Ability of populations of a given species to increase in size
 - Abiotic Contributing Factors:
 - Favorable light
 - Favorable Temperatures
 - Favorable chemical environment nutrients
 - Biotic Contributing Factors:
 - Reproductive rate
 - Generalized niche
 - Ability to migrate or disperse
 - Adequate defense mechanisms
 - Ability to cope with adverse conditions

Multiple factors may limit population growth

- declining birth rate or increasing death rate
- The regulation of growth in a natural population is determined by several factors
 - Disease
 - limited food supply
 - the buildup of toxic wastes
 - increased disease
 - predation

Population Growth Curve

- When you observe a population that has no or few limiting factors the curve is a J curve
- An environment cannot maintain a J curve population growth.
- So in reality the curve has to turn into a S curve **PREDICTING POPULATION GROWTH**
- Nearly all populations will tend to grow exponentially as long as there are resources available.
- Two of the most basic factors that affect the rate of population growth are the birth rate, and the death rate.
- r(rate of growth)=birth rate death rate

- Exponential growth curve: population growth plotted against time. (J curve)
- As a population gets larger, it also grows at a faster rate.
- This is the maximum population growth under ideal circumstances.
- Includes plenty of room for each member, unlimited resources (food, water) and no hindrances (predators).
- Logistic model: This model accounts for the declining resources available to populations as they grow.
- It assumes the birth and death rates are not constant.
- As the population grows, births decline and death rises.
- Eventually birth=death so the population stops growing.
- Carrying capacity (K): The number of organisms of one species that an environment can support indefinitely.

PREDICTING POPULATION GROWTH, Two modes of population growth.

POPULATION GROWTH STRATEGIES

There are 2 ways a population can prosper:

- -Growth Strategy #1 (r strategy) characterized by exponential growth, which results in temporarily large populations, followed by sudden crashes in population size. Ex. Insects, bacteria, some plants J Curve
 - live in unpredictable and rapidly changing environments
 - Reproduce quickly when conditions are favorable
 - Many offspring: small, mature rapidly, no parental care
 - -r = rate of growth
- -Growth Strategy #2 (K-strategy): characterized by a high degree of specialization. Ex. Trees, whales, tigers, etc. S curve
 - Live in stable and predictable environments
 - Can compete effectively
 - Reproduce late in life
 - Few offspring: large, mature slowly, often much parental care
 - K = carrying capacity
- <u>Logistic growth</u> is slowed by population-limiting factors
 Emigration
- When an area becomes unsuitable organisms will move out of the area to find a better area.
- Immigration
 - When organisms move into an area (the better area that they move into

Population Size

• Natality

- Number of individuals added through reproduction
- Total Fertility Rate Average number of children born alive per female in her lifetime
- Mortality
 - Number of individuals removed through death
 - About every 10 years, both hare and lynx populations have a rapid increase (a "boom") followed by a sharp decline (a "bust")
- Principles of population ecology may be used to
 - manage wildlife, fisheries, and forests for sustainable yield
 - reverse the decline of threatened or endangered species
 - reduce pest populations
 - IPM = Integrated Pest Management

The Spread of Shakespeare's Starlings

- In 1890, a group of Shakespeare enthusiasts released about 120 starlings in New York's Central Park
- Today: over 100 million starlings, spread over N. Amer.

Human Population growth

- doubled three times in the last three centuries
- about 6.1 billion and may reach 9.3 billion by the year 2050
- improved health and technology have lowered death rates
- The history of human population growth
- The age structure of a population is the proportion of individuals in different age-groups

What is the answer to this problem?

- Education
- Technology
- Moral responsibility

Ecological result of human population

• The ecological footprint represents the amount of productive land needed to support a nation's resource needs