
The Cell Membrane	& Transport
-------------------	-------------

- Membrane structure & Early discoveries
 - A. Developing the Cell theory- Took nearly 200 years
 - 1. Robert Hooke 1665 examined cork and oak bark and saw little cubicles he called cells
 - 2. Matthias Schleiden 1838 discovered all plants are made of cells
 - 3. Thoedor Schwan 1839 concluded the same about animals
 - 4. Rudolf Vircow 1858 stated that all cells come from pre-existing cells
 - 5. These ideas along with the work of Louis Pasteur's work brought together to form the Cell Theory
 - a. All organisms are composed of cells
 - b. Cells are the basic unit of structure and function in all living things
 - c. All cells are produced from other cells
 - B. Properties of the plasma membrane
 - 1. Cells live in a fluid environment whether in land or water
 - 2. The plasma membrane is the boundary between the cell and its environment
 - 3. It encloses the cell's contents
 - 4. It controls what is passed between the cell and its environment.
 - 5. Plasma membrane has selective permeability
 - a. Only allow certain things are allowed to pass
 - The model of the plasma membrane
- A. Lipid Bilayer two layers of lipids called phospholipid (clique on picture for demonstration)
 - 1. Phosphates, water soluble heads point toward the outside and inside of the cell
 - 2. The lipid layer is toward the middle of the cell membrane
- B. These properties allow the cell membrane to be maintained with the least amount of energy used
 - 1. The lipids allow the membrane to act as a thin layer of oil around the cell
 - 2. Cholesterol are embedded in the lipids to give some rigidity to the cell (overhead 4-6)
- Plasma Membrane Structural Components
- 3. Phosphates
- 4. The lipid layer is toward the middle of the cell membrane
- C. Membrane proteins -
 - 1. bumps seen with the electron microscope are proteins embedded in the plasma membrane
- 2. The proteins can migrate sideways within the bilayer but not as rapidly as the phospholipids
- 3. Because the components of the membrane are constantly moving like a fluid the current membrane model is called the "Fluid Mosaic Model" (overhead 4-8)

I.

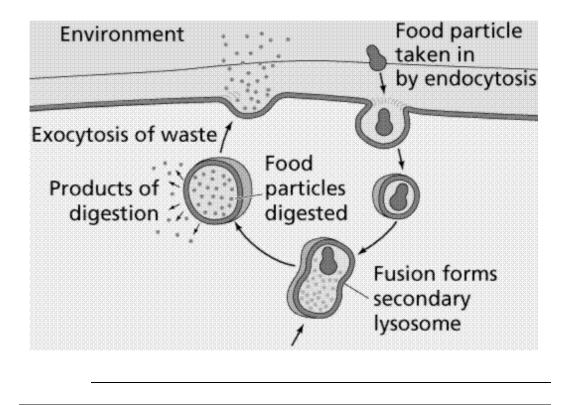
II.

- 4. Plasma membrane serves mainly as cell outer boundary of cells, but it also is around organelles
- 5. The proteins play a major role in regulation, recognition and communication
- 6. The proteins help the cell to selectively permeable
- 7. Each membrane has its own distinct permeability characteristics
- D. Roles of membrane

E. Membrane Function

- 1. Diffusion Diffusion is the random movement of particles from areas of high concentration to areas of low concentration.
- 2. When there is a continuous movement but no overall change this is dynamic equilibrium
- 3. The same concentration inside as outside or same amount leaving as coming in
- 4. Particles that dissolve and move quickly across the membrane are salts, liquids oxygen, carbon dioxide etc...
- 5. Osmosis is diffusion of water across a membrane
- 6. Osmotic balance results from the same amount of water leaving as coming in
- 7. Diffusion and osmosis substances are either able to dissolve in the lipid bilayer or are small enough to squeeze between phospholipids.
- 8. Passive Transport is like osmosis and diffusion that requires no energy of the cell.
- 9. Facilitated diffusion
 - a. Transport proteins are the proteins embedded in the bilipid layer
 - b. Channel proteins are proteins with pores in them to allow certain ions to go through
 - c. Channel proteins many times are polar
 - d. Carrier proteins are proteins that change shape and move things from side of the cell membrane to the other
 - e. Gate proteins are proteins in the cell membrane that open and allow certain things through

F. Active transport


- 1. requires the cell to use some of its own energy to move particles
- 2. Pumps Transport proteins embedded in the plasma membrane can bind to a particle then chemical energy is used to alter the shape of pump and move particles
- 3. Active transport may occur in either direction when moving from low to high
- G. Endocytosis and Exocytosis

- H. Endocytosis is the process that the plasma membrane engulfs and takes in substances from a cell's environment
 - 1. Phagocytosis is when the plasma membrane surrounds large particles and forms a vesicle which the forms a vacuole inside the ce
 - 2. Pinocytosis is the process like phagocytosis but liquids are taken in by this process
 - 3. Receptor aided endocytosis (Figure 4-8)
 - 4. Protein in the plasma membrane recognize substance and link to form a pit then a vesicle

Exocytosis is the reverse process of endocytosis

- lie outside of the plasma membrane in plants, fungi algae and bacteria
- Plant cell walls are mostly composed of the polysaccharide cellulose.
 - Cellulose is arranged in rows of fiber and stacked in layers
 - Cellulose uses
 - Cotton, wood, paper, rayon
 - Middle lamella is between adjacent cell walls and pectin that binds them together

Read pages 111 and 112

