

- Airbags fill with N_{2} gas in ar accident.
- Gas is generated by the decomposition of sodium azide, NaN_{3}.
- $2 \mathrm{NaN}_{3} \longrightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2}$

Kinetic theo of gases

- Gases are made of nall particles that are in constant motion -
- Gas particles are not held in a fixed position like a solid
- Gas particles motion is not restricted
- There is a Jot of "free" space in agas.
- Gases can be expanded infinitely.
- Gases fill containers uniformly and completely.
- Gases diffuse and mix rapidly.
- Gases are like point m sses within a volume of mostly empty space
- A point mass has no volume or diameter
- Point masses do not exist
- So and imaginary gas with point masses is called an ideal gas
- An ideal gas only exist theoreticaily
- Temperature and pressure बiffect the volume of a gas

Properties of Grses
Gas properties can be nodeled using math. Model depends on-

- $\mathrm{V}=$ volume of the gas $\left(\mathrm{d} \mathrm{m}^{3}\right)$ or $\left(\mathrm{m}^{3}\right)$
- $T=$ temperature (K)

$$
\begin{aligned}
& \text {-A Petersperars res in the entire } \\
& \text { chiagier yjustro to Kel in!y No } \\
& \text { Excepriofs: }
\end{aligned}
$$

- $n=$ amount (moles)
- $P=$ pressure
(atmospheres)

Hg rises in tube unti] force of Hg (down) balances the force of atmosphere (pushing up). (Just like a straw in a soft drink)

P of hg pushing down related to

- Hg density
- column height

Column height measures Pressure of atmosphere

- 1 standard atmosphere (atm) $=760 \mathrm{~mm} \mathrm{Hg}$ (or torr)
$=29.92$ inches *
$=14.7$ pounds/in ${ }^{2}$ (psi)
$=101.3 \mathrm{kPa}$ (S) unit is PASCAL) $=$ about 34 feet of water!

Standard c ditions

- Standard Temperature is $0^{\circ} \mathrm{O} \quad 273 \mathrm{~K}$
- Standard pressure $101.325 \mathrm{kPa}, 760 \mathrm{~mm}$, or 1 atmosphere
- STP is Standard Temperature Pressure
 \section*{And now, we pause for this
 \section*{And now, we pause for this commercial message from STP} commercial message from STP}

OK, so it's really not THIS kind of STP...

STP in chemistry stands for Standard Temperature and Pressure

Standard Pressure = 1 atm (or an equivalent)

Standard

Temperature = 0 deg

C (273 K)

Boyles

P a 1 N

This means Pressure and Volume are INVERSELY PROPORTIONAL if moles and temperature are constant (do not change). For example, P goes up as V goes down.
$P_{1} V_{1}=P_{2} V_{2}$

\section*{Boyle's Law cud Kinetic Molecular Theory
 | \bullet | \bullet | | 0 |
| :--- | :--- | :--- | :--- |
| \bullet | 0 | | |
| \bullet | \bullet | 0 | |
 Pproportional to $1 / \mathrm{N}$}

A bicycle pump is a good example of Boyle's law.
As the volume of the air trapped in the pump is reduced, its pressure goes up, and air is
 forced into the tire.

Dalton's Law of Partial pressiyses $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ $0.32 \mathrm{~atm} \quad 0.16 \mathrm{~atm}$

What is the total pressure in the flask?

Therefore,
$P_{\text {total }}=P_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{P}_{\mathrm{O}_{2}}=0.48 \mathrm{~atm}$
Dalton's Law: total P is sum of PARTIAL pressures.

Charles's Eas,

If n and P are constant, then V a T

V and T are directly proportional.

- If one temperature goes volume goes up!

Charles's original balloon

Charles and vin Scale

- Jacques Charles foun hat if you started at $0^{\circ} \mathrm{C}$ any gas would do lole if the temperature was raised to $273^{\circ} \mathrm{C}$
- Increase in $1^{\circ} \mathrm{C}$ will cause volume to increase by $1 / 273$
- That would suggest that a gas would have no volume at $-273^{\circ} \mathrm{C}$
- Increase temperature means an increase volume
- $\mathrm{V}=\mathrm{k} T^{\text {, or } k=V / I, ~ s o ~} \mathrm{~V}_{1} / T_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$

If n and V are constant, then P a T

P and T are directly proportional.
P_{1}

- If one temperature goes up, pressure goes up!
- If you increase temperature, 4 of collisions with the side of the container increase causing increase presure

If you should only need one of the other gas laws, you can cover up the item that is constant and you w I get that gas law!

Boyle's Law
Charles' Law
Gay-Lussac's
Law

A sample of helium gas has a volume of $\mathbf{0 . 1 8 0}$ L , a pressure of 0.800 atm and a temperature of $29^{\circ} \mathrm{C}$. What is the new temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the gas at a volume of 90.0 mL and a pressure of 3.20 atm?

Set up Data Table $P_{1}=0.800 \mathrm{~atm}$
$V_{1}=180 \mathrm{~mL}$ $T_{1}=302 \mathrm{~K}$
$P_{2}=3.20 \mathrm{~atm}$
$V_{2}=90 \mathrm{~mL}$

$$
T_{2}=? ?
$$

$$
\begin{aligned}
& P_{1}=0.800 \mathrm{~atm} \quad V_{1}=180 \mathrm{~mL} \quad \mathrm{~T}_{1}=302 \mathrm{~K} \\
& P_{2}=3.20 \mathrm{~atm} \\
& \underline{P_{1} V_{1}}=\underline{P_{2} V_{2}} \\
& \mathrm{~T}_{1} \\
& =\frac{P_{2} V_{2} T_{1}}{P_{1} V_{1}}
\end{aligned}
$$

$\mathrm{T}_{2}=3.20 \mathrm{~atm} \times 90.0 \mathrm{~mL} \times 302 \mathrm{~K}$ $0.800 \mathrm{~atm} \times 180.0 \mathrm{~mL}$
$T_{2}=604 \mathrm{~K}-273=331^{\circ} \mathrm{C}$

Solve using it Cancel

- First take what you hal and solve for what you don't have and
- Use the gas laws at each step
- $302 \mathrm{~K}=0.090 \mathrm{dm}^{3} ; 3.20 \mathrm{~atm}=604 \mathrm{~K}$
$0.180 \mathrm{dm}^{3} 3.80 \mathrm{~atm}$

A gas has a volume of $675 \mathrm{dm}^{3}$ at $35^{\circ} \mathrm{C}$ and 0.850 atm pressure. What is the temperature in ${ }^{\circ} \mathrm{C}$ when the gas has a volume of $0.315 \mathrm{dm}^{3}$ and a pressure of 802 mm Hg ?

A balloon has a volume of 785 mL on a fall day when the temperature is $21^{\circ} \mathrm{C}$. In the winter, the gas cools to $0^{\circ} \mathrm{C}$. What is the new volume of the balloon?

A sample of neon gas used in a neon sign has a volume of $15 \mathrm{dm}^{3}$ at STP. What is the volume (dm^{3}) of the neon gas at 2.0 atm and $-25^{\circ} \mathrm{C}$?

Diffusion and C aham's Law

- Diffusion is the random scattering of gas particles
- Each gas diffuse at a differen rate when kinetic energy is constant
- Graham's Law of diffusion- The relative rates at which two gases under identical conditions of temperature and pressure will pass through a small hole vary inversely as the square roots of the molecular masses of the gas

HONORS only

Graham's law governs effusion and diffusion of gas molecules.

Rate for A
 Rate for B
 $$
=\sqrt{ }
$$
 M_ofB M of A

Rate of effusion is inversely proportional to its molar mass.

Thomas Graham, $1805^{-1869 .}$
Professor in Glasgow and London.

HONORS

 only GAS DIFFUSTON AND EFFUS[ONMolecules effuse thru holes in a rubber balloon, for exam at a rate ($=$ moles/time) that is - proportional to T

- inversely proportional to M.

Therefore, Hé cfituses more rapidly than O_{2} at same T .

Gas Disfusioss

 relation of mass to rate of difffusion- HCl and NH_{3} diffuse from opposite ends of tube.
- Gases meet to form $\mathrm{NH}_{4} \mathrm{Cl}$
- HCl heavier than NH_{3}
- Therefore, $\mathrm{NH}_{4} \mathrm{Cl}$ forms closer to HCl end of tube.

Gaseous diffusion of $\mathrm{NH}_{3}(g)$ and $\mathrm{HCl}(g)$

Diffusion and Application of Graham's Law

- KE $1 / 2 \mathrm{mv}^{2}$
- At the same temperature Kinetic Energy is the same

$$
\begin{aligned}
& -\mathrm{KE}_{1}=K E_{2} \\
& -1 / 2\left(m v^{2}\right)_{1}=1 / 2\left(m v^{2}\right)_{2} \\
& -\left(m v^{2}\right)_{1}=\left(m v^{2}\right)_{2} \\
& -v_{1} / v_{2}{ }^{2}=m_{2} / m_{1} \\
& -v_{1} / v_{2}=\left(m_{2} / m_{1}\right)^{1 / 2} \\
& -v_{1}=v_{2}\left(m_{2} m_{1}\right)^{1 / 2}
\end{aligned}
$$

$$
\text { Avogadros } 14 y \text { gois }
$$

Equal volumes of gases at the same T and P have the s me number of molecules.
$V=n(R T / P)=k n$
V andin are directiy related.
twice as many
molecules

Avogadro's Hypothesis and Klietic inolecular Theory

The gases in this experiment are all measured at the same I and $V_{\text {e }}$

P proportional to n

$$
\begin{aligned}
& \text { IDEALGAS DAT } \\
& \mathbf{P V}=\boldsymbol{n} \mathbf{R} T
\end{aligned}
$$

Brings together gas

 properties.Can be derived from experiment and theory, ex BE SURE YOU KNOW THIS EQUATION!
$\mathrm{P}=$ Pressure
$\mathrm{V}=$ Volume
T = Temperature
$\mathrm{N}=$ number of moles
R is a constant, called the Ideal Gas Constant
Instead of learning a different value for R for all the possible unit combinations, we-can just memorize one value and convert the units to match R.

L. atm

$\mathbf{R}=0.0821$

$$
\mathrm{Mol} \cdot \mathrm{~K}
$$

How much N_{2} is required to fill a small room with a volume of 960 cubic feet $(27,000$ L) to 745 mm Hg at $25^{\circ} \mathrm{C}$?
Solution

1. Get all data into proper units
$\mathrm{V}=27,000 \mathrm{~L}$
$\mathrm{T}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K}$ $P=745 \mathrm{~mm} \mathrm{Hg}(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})$
$=0.98 \mathrm{~atm}$
And we always know $R, 0.0821 \mathrm{Latm} / \mathrm{mol} \mathrm{K}$

How much N_{2} is req' d to fill a small room with a volume of 960 cubic feet $(27,000 \mathrm{~L})$ to $\mathrm{P}=745 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$?
Solution
2. Now plug in those values and solve for the unknown.

$P M=n D$
 RTI

(0.98 atm)($2.7 \times 10^{4} \mathrm{~L}$)

$$
(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})
$$

$\mathrm{n}=1.1 \times 10^{3} \mathrm{~mol}$ (or about 30 kg of gas)

Dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, laughing gas, is used by dentists as an anesthetic. If 2.86 mol of gas occupies a 20.0 L tank at $23^{\circ} \mathrm{C}$, what is the pressure (mm Hg) in the tank in the dentist office?

Deviations fis oss Ideal Gis Law

The ideal gas consumes the entire amount of available volume. It does not account for the volume of the molecules themselves.

- There are

An ideal gas assumes there are no attractions between molecules. Attractions slow down the molecules and reduce the amount of collisions.

- Otherwise a gas could not condense to become a liquid.

The \% of gases in air Partial pressure (STP)

78.08\% $\quad \mathrm{N}_{2}$ $20.95 \% \quad \mathrm{O}_{2}$
159.2 mm Hg
0.94\% Ar
7.1 mm Hg
$0.03 \% \mathrm{CO}_{2}$
0.2 mm Hg
$P_{\text {AIR }}=P_{N_{2}}+P_{\mathrm{O}_{2}}+P_{A r}+P_{C O}=760 \mathrm{~mm} \mathrm{Hg}$

Total Pressure
760
mm Hg

Health Note

When a scuba diver is several hundred feet under water, the high pressures cause \mathbf{N}_{2} from the tank air to dissolve in the blood. If the diver rises too fast, the dissolved N_{2} will form bubbles in the blood, a dangerous and painful condition called "the bends". Helium, which is inert, less dense, and does not dissolve in the blood, is mixed with O_{2} in scuba tanks used for deep descents.

- Gases, since they mix with other gases readily, must be collected in an environment where mixing can not occur. The easiest way to do this is under water because water displaces the air. So when a gas is collected "over water", that means the container is filled with water and the gas is bubbled through the water into the container. Thus, the pressure inside the container is from the gas AND the water vapor. This is where Dalton's Law of Partial Pressures becomes useful.

Temperature, ${ }^{\circ} \mathrm{C}$	Pressure, mmHg	Temperature, ${ }^{\circ} \mathrm{C}$	Pressure, $\mathbf{m m H g}$
0	4.6	27	26.7
5	6.5	28	28.3
10	9.2	29	30.0
11	9.8	30	31.8
12	10.5	35	52.2
13	11.2	40	71.9
14	12.0	45	92.5
15	12.8	50	118.0
16	13.6	55	189.4
17	14.5	60	233.7
18	15.5	65	289.1
19	16.5	70	355.1
20	17.5	80	533.6
21	18.7	85	633.9
23	19.8	90	760.0
24	21.1	100	906.1

A student

 collects some hydrogen gas over water at 20 degrees C and 768 torr. What is the pressure of the gas?| Temperature, ${ }^{\circ} \mathrm{C}$ | Pressure, $\mathbf{m m H g}$ | Temperature, ${ }^{\circ} \mathrm{C}$ | Pressure, $\mathbf{m m H g}$ |
| :--- | :---: | :---: | :---: |
| 0 | 4.6 | 27 | 26.7 |
| 5 | 6.5 | 28 | 28.3 |
| 10 | 9.2 | 29 | 30.0 |
| 11 | 9.8 | 30 | 31.8 |
| 12 | 10.5 | 35 | 42.2 |
| 13 | 11.2 | 40 | 55.3 |
| 14 | 12.0 | 45 | 71.9 |
| 15 | 12.8 | 50 | 92.5 |
| 16 | 13.6 | 55 | 118.0 |
| 17 | 14.5 | 60 | 149.4 |
| 18 | 15.5 | 65 | 187.5 |
| 19 | 16.5 | 70 | 233.7 |
| 20 | 17.5 | 75 | 289.1 |
| 21 | 18.7 | 80 | 355.1 |
| 22 | 19.8 | 85 | 433.6 |
| 23 | 21.1 | 90 | 525.8 |
| 24 | 22.4 | 95 | 633.9 |
| 25 | 23.8 | 100 | 760.0 |
| 26 | 25.2 | 105 | 906.1 |

768 torr -17.5 torr $=750.5$ torr

$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad 4 \mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}$, in a flask with a volume of 2.50 L . What is the volume of O_{2} at STP?

Bombardier beetle uses decomposition of hygrogen peroxide to defend itself.

Gases and siroichuignsury

$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the volume of O_{2} at STP?
Solution

$1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$22.4 \mathrm{~L} \mathrm{O}_{2}$
	$34 \mathrm{gH}_{2} \mathrm{O}_{2}$	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{o}_{2}$

$=0.36 \mathrm{LO}_{2}$ at $\mathrm{S} \Psi$
A. What is the volume at STP of 4.00 g of CH_{4} ?
B. How many grams of He are present in 8.0 L of gas at STP?

- 1. Do the problem like it was at STP. (V)
- 2. Convert from STP $\left(\mathrm{V}_{1}, \mathrm{P}_{1}, \mathrm{~T}_{1}\right)$ to the stated conditions $\left(P_{2}, T_{2}\right)$

How many $\mathrm{L} \mathrm{of}_{2}$ are needed to react $28.0 \mathrm{~g} \mathrm{NH}_{3}$ at $24^{\circ} \mathrm{C}$ and 0.950 atm ?
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

