Avogadro's Hypothesis and Klietic inolecular Theory

- At given temperature all molecules have the same kinetic energyl $K E=1 / 2 \mathrm{mv}^{2}$
- Pressure exerted by a gas is determined by the number of molecules in the gas and the speed that they travel
- Thus equal numbers must\%ccupy equal volumes

$$
\text { A vogadros } 14 y \text { posisu }=5 \text { is }
$$

Equal volumes of gases at the same T and P have the s me number of molecules.
$V=n(R T / P)=k n$
V andin are directiy related.

- If the number of roles (n) are equal under similar remperature and pressure then volume must be equal
- 1 mole of any gas will occupy $22.4 \mathrm{dm}^{3}$ STP
- Ideal gas equation combines Charles and Boyles with moles (n)
- VEK(T/P) or PV =kT
- K depends on the number of molecules or particles present and number of particles present is your number of moles

If one mole occupies $22.4 \mathrm{dm}^{3} @$ ©TP then k has to include ail of these (volume, pressure, temperature) and moles

$$
\begin{aligned}
& \text { IDEALGAS DAT } \\
& \mathbf{P V}=\boldsymbol{n} \mathbf{R} T
\end{aligned}
$$

Brings together gas

 properties.Can be derived from experiment and theory, ex BE SURE YOU KNOW THIS EQUATION!

Gas and t Mole

- Since PV $=k T$ and k mu clude moles and (temperature, pressure volume)
- The (temperature, pressure, volume) of one mole is given the symbo R
a) Sok $=n \mathrm{n}$
b) $\quad \mathrm{R}=(101.325 \mathrm{kPa})\left(22.4 \mathrm{dm}^{3}\right)$
(1mole) (273K)
c) $\quad R=8.31 \mathrm{dm}^{3} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{P}=$ Pressure
$\mathrm{V}=$ Volume
T = Temperature
$\mathrm{N}=$ number of moles
R is a constant, called the Ideal Gas Constant
Instead of learning a different value for R for all the possible unit combinations, we-can just memorize one value and convert the units to match R.

$$
R=8.31 \quad \frac{\mathrm{dm}^{3} \cdot \mathrm{kPa}}{\mathrm{Mol} \mathrm{\cdot K}}
$$

How much N_{2} is reguired to fill a small room with a volume of 960 cubic feet ($27,000 \mathrm{~L}$) to 745 mm Hg at $25^{\circ} \mathrm{C}$?

Solution

1. Get all data into proper units

$$
\begin{aligned}
& \mathrm{V}=27,000 \mathrm{~L}=27000 \mathrm{dm}^{3} \\
& \mathrm{~T}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
& \mathrm{P}=74 . \mathrm{mm} \mathrm{Hg}(101.3 \mathrm{kPa} / 760 \mathrm{~mm} \mathrm{Hg})
\end{aligned}
$$

$$
=99.3 \mathrm{kPa}
$$

And we always know $\mathrm{R}, 8.31 \mathrm{dm}^{3} \mathrm{kPa} / \mathrm{mol} \mathrm{K}$
2. Now plug in those values and solve for the unknown.
$P V=n$ DT

Molecular Mass Determination

- Moles = mass/moleculair rrass or $n=m / M$ - Then M=mRT/PV

Ideal Gas Lavy Quesitons

1. How many moles of CO_{2} (g) is in a $5.6 \mathrm{dm}^{3}$ sample of CO_{2} measured at STP?
2. a) Calculate the yolume oi 4.50 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ measured at STIP. b) Whisi volume would this occupy at $25^{\circ} \mathrm{C}$ and 150 kPa (solve this 2 ways)
3. How many grams of $\mathrm{Cl}_{2}(\mathrm{~g})$ can be stored in a 10.0 dm ${ }^{3}$ container at 1000 kPa and $30^{\circ} \mathrm{C}$?
4. At $150^{\circ} \mathrm{C}$ and $100 \mathrm{kPa}, 1.00 \mathrm{dm}^{3}$ of a compound has a mass of 2.506 g . Calculate its molar mass.
$5.98 \mathrm{~cm}^{3}$ of an unknown gas weighs 0.087 g at STP. Calculate the molar mass of the gas. Can you determine the identity of this unknown gas?

Dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, laughing gas, is used by dentists as an anesthetic. If 2.86 mol of gas occupies a 20.0 L tank at $23^{\circ} \mathrm{C}$, what is the pressure (kPa) in the tank in the dentist office?

A 5.0 L cylinder contains oxygen gas at $20.0^{\circ} \mathrm{C}$ and 98 kPa . How many grams of oxygen are in the cylinder?

Mass/Gas/Volume relationships

- It is easier to measure the volume of a gas than its mass
- Measure volume under existing conditions and convert to STP to find mass
- Solving Mass Gas Volume equations
- Example; What volume of hydrogen at STP can be produced from the reaction oof 6.54 g Zn with HCl \#Write balanced equation $2 \mathrm{HCl}+\mathrm{Zn}>\mathrm{H}_{2}+\mathrm{ZnCl}_{2}$
". Find the number of moles of a given substance: $6.54 \mathrm{~g} \mathrm{Zn}(1 \ln \mathrm{Zn} / 64.5 \mathrm{gZn})$
\#) Find mole ratio of given to mole ratio of required
"Express molesiof gas in terms of volume

Gas Volume Mass Relationship

- Find the mass of a subsi=nce formed when the volume is known
- Example: How many grams of NaCl will result from the reaction of $1.12 \mathrm{~cm}^{3}$ of Cl_{2} at SIP with sodfum
Determine the balanced equation: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
- Change volume of gas to moles

Determine mole ratio

- Convert moles to grams

$$
\begin{aligned}
& 22.4 \mathrm{CFR} \text { 1n }
\end{aligned}
$$

Volume Volume relationships

- Example tow many clrn3 of O_{2} are required to burn $1 \mathrm{dm}^{3}$ of CH_{4} ?
- Write the balanced equation $\mathrm{CH}_{4}+2 \mathrm{O}_{2}-\mathrm{CO}_{2}$ $-2 \mathrm{H}_{2} \mathrm{O}$
$-1 \mathrm{dm}^{3} \mathrm{CH}_{4}: \frac{1 \mathrm{nCH}_{4}}{22.4 \mathrm{~cm}^{3}} \frac{2 \mathrm{n} \mathrm{O}_{2}}{\mathrm{nCH}_{4}}-\frac{22.4 \mathrm{dm}^{3}}{1 \mathrm{O}_{2}}=2 \mathrm{dm}^{3} \mathrm{O}_{2}$
- Solve by inspection

Since $22.4 \mathrm{dm}^{3}$ cancels out jut use the gas Volume as the mole ($\boldsymbol{\mu}$) ratio
$1 \mathrm{dm}^{3} \mathrm{CH}_{4} \cdot \frac{2 \mathrm{dm}^{3} \mathrm{O}_{2}}{1 \mathrm{dm} \mathrm{C}_{4}}=2 \mathrm{dm}^{3} \mathrm{O}_{2}$
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad 4 \mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}$, in a flask with a volume of 2.50 L . What is the volume of O_{2} at STP?

Bombardier beetle uses decomposition of hygrogen peroxide to defend itself.

Gases and siroicnibnuersy
 $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~J}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flasts with a volume of $2.50 \mathrm{dm}^{3}$. What is the volume of O_{2} at STP?
Solution

$1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{o}_{2}$	$22.4 \mathrm{LO}_{2}$
	$34 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{o}_{2}$

$=0.36 \mathrm{LO}_{2}$ at ST
A. What is the volume at STP of 4.00 g of CH_{4} ?
B. How many grams of He are present in $8.0 \mathrm{dm}^{3}$ of gas at STP?

- 1. Do the problem like it was at STP. (V)
- 2. Convert from STP $\left(\mathrm{V}_{1}, \mathrm{P}_{1}, \mathrm{~T}_{1}\right)$ to the stated conditions $\left(P_{2}, T_{2}\right)$

How many dm^{3} of O_{2} are needed to react 28.0 g NH_{3} at $24^{\circ} \mathrm{C}$ and 0.950 atm?

$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Limiting F ctants

- Limiting reactant is th emical which is completely consumed the reaction
- Example How many grams of CO_{2}. are formed if 10.0 g of carbon are burned in 20.0 $\mathrm{dm}^{3} \mathrm{of}^{-\mathrm{O}_{2}}$
- Write the balanced equation: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
- Change both quantities to moles.

Complete the problem based on the limiting reactant

