Chemistry

- Is the interaction between matter and energy

Matter \& Energy

- Matter - anything that has inertia
- Energy - the capacity to do work
- Potential energy - energy of position
- Kinetic energy - energy of motion
- Matter \& Energy - Once it was believed that matter and energy in the universe was constant.
$-\mathbf{E}=\mathbf{m c}{ }^{2}$
- Bremsstrahlung \& Pair production
- Matter can change to energy and energy to matter

Qualitative verses quantitative

- Qualitative - Property without measurements
- Quantitative- property described by measurements
- Time, temperature, volume, mass, distance, etc...
- Must have a standard to measure by

Measurement and uncertainty

Parallax error is an error do to the position of the person reading the measurement.

SI system

- Based on the metric system
- Mass vs Weight
- Weight - gravitational pull and is measured in Newtons
- Mass - depends on quantity of matter and is measured in grams

Precision vs. Accuracy

- Precision refers to the uncertainty of the measurement or how precise the instrument is
- Accuracy refers to how close a measurement is to the actual quantity

Example 1:

- How old are you?
- I am 16 years old
- I am 15 years and 8 months old
- I am 15years, 8 months, and 5 days old
- I am 15 years, 8 months, 5 days, and 10 hours old

Accuracy vs. Precision for Example 1

- Each of these statements is more accurate and more precise than the one before it.
- Statement two is more accurate and more precise that statement one.
- Statement three is more accurate and more precise than statement two.

Example 2:

- How long is a piece of string?
- Johnny measures the string at 2.63 cm .
- Using the same ruler, Fred measures the string at 1.98 cm .
- Who is most precise?
- Who is most accurate?

Accuracy vs. Precision for Example 2

- The actual measurement is 2.65 cm .
- Johnny is fairly accurate and also very precise.
- Fred is very precise, however, he is not very accurate. His lack of accuracy is due to using the ruler incorrectly.

Example 3

- Using a centigram balance,
- Mary measured a sample at 3 g .
- Ashley measured the same sample at 3.00 g .
- Who is most precise?
- Who is most accurate?

Accuracy vs. Precision for Example 3

- The actual measurement is 3.01 g .
- Mary is reasonably accurate. She was not very precise because the balance was capable of measuring to two decimal places.
- Ashley is much more accurate because of the precision of her measurement and closeness of her value to the actual value.

ACCURACY/PRECISION

- You can tell the precision of a number simply by looking at it. The number of decimal places gives the precision.
- Accuracy on the other hand, depends on comparing a number to a known value. Therefore, you cannot simply look at a number and tell if it is accurate

In Conclusion

- In science we depend upon both the accuracy and precision of the numbers we use.
- The need for accuracy and precision varies with the circumstance and other measurements being used.

Handling numbers in Science

- Scientific notation
- Standard form is decimal point after first whole number
- Then x 10 to the power
- Example 6.02×10^{23}

Scientific Notation

- A. Purpose is to show the precision of the measurement and calculation
- Standard form is 1 whole \# and decimal 1.32×10^{6}
- As you move the decimal to the left you increase the exponent, and as you move to the right exponent decreases
- The negative exponent indicates an inverse. $10^{-3}=$ $1 / 10^{3}=1 / 1000=.001$
- When adding get exponents the same and add
- When multiplying, multiply the numbers and add the exponents
- When dividing, divide the numbers and substract the exponents
- When taking power to power, find power of the number and multiply exponents

Adding \& Subtracting

- Make power the same and add or subtract

Multiplication

- Multiply the main \# and add exponent
- Example $\left(2.5 \times 10^{2}\right)\left(2 \times 10^{3}\right)=5 \times 10^{5}$

Dividing

- You divide the main \# and subtract the exponent
- Example $\left(2.5 \times 10^{2}\right) /\left(2 \times 10^{3}\right)=1.25 \times 10^{-1}$

Powers to Power

- You take the power of the main number (mantissa) and you multiply the exponents.
- Example: $\left(2 \times 10^{2}\right)^{3}=8 \times 10^{6}$
$-\left(2 \times 10^{2}\right)^{-3}=1 \times 10^{0} /\left(2 \times 10^{2}\right)^{3}=1 \times 10^{0} / 8 \times$ $10^{6}=.125 \times 10^{-6}=1.25 \times 10^{-7}$

When you do the cubed root you find the root of the main number and divide the exponent by 3
$\left(8 \times 10^{6}\right)^{1 / 3}=2 \times 10^{2}$

Derived units -

- Derived units are a combination of fundamental units
- Speed = distance/time
- Area $=$ length x width
- Volume $=\mathrm{L} \times \mathrm{X} \times \mathrm{H}\left(\mathrm{cm}^{3}\right)$
- Density $=\mathbf{m a s s} /$ volume

Factor Label Method

- Solving problems using the factor label method
- Set up equation to factor out labels to get to the answer

Factor Label Method

- Simply using conversion units
- Example
- How many miles does light travel in one year? (Speed of light $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

Significant digits (sig figs)

- Purpose
- To show the presision of the measurement
- All digits that occupy places for which actual measurement was made is significant
- Rules
- Digits other than zero always significant
- Zeros after decimal point are significant
- Zeroes between 2 significant digits are significant
- Zeroes for spacing decimal are not significant

Significant digits (sig figs)
All digits that occupy places for which actual measurement was made is significant

Rules

- Digits other than zero always significant
- Zeros after decimal point are significant
- Zeroes between 2 significant digits are significant
- Zeroes for spacing decimal are not significant

Significant digits in calculations

Addition and subtraction the answer contains only as man decimal places as the least precise value

Example: $2.01+2=4$

In multiplication and division, the answer can contain only as many significant digits as the least precise value used to arrive at the answer

Example: $1.133 \times 5.126000=$
5.807758 but the correct answer is
5.808

Sig Fig Calculations

- To determine significant digits in calculations
- Addition and subtraction the answer contains only as man decimal places as the least precise value
- Example: $2.01+2=4$
- Example: $20+5.7=3 \times 10^{1}, 2.5+7=1.0 \times 10^{1}$
- Problems p. 27

Relative Error

- Percentage uncertainty in a measurement
- Accuracy/measurement total
- (Uncertainty/total measurement)x 100
- Example
- Measurement 24.3 cm
- Accuracy $\pm 0.1 \mathrm{~cm}$
- (0.1/24.3) X $100=0.4 \%$

Density

- $\mathrm{D}=\mathrm{m} / \mathrm{v}$
- Do example problems page 34

