Matter

- Has mass and takes space

Types of matter

- Substances
- Mixtures

What are the two main groups that make up all matter?*

Mixtures

- contain more than one type of material

Heterogeneous material

- Material that is composed of more than one phase
- A phase is a region of uniform properties
- Different phases in a heterogeneous are separated by definite boundaries called interfaces

Homogenous materials -

- material that consist of only one phase
- If you break homogenous materials down each piece will have the same properties
- Interfaces don't exist in homogenous, because they are attracted toward other part of mixture
- Solution is a homogeneous material consisting of two parts
- Solute - dissolved material
- Solvent - dissolving material

Pure Substance -

- matter that is held together by chemical bonds or elements
- Elements
- Contain only one type of atom
- Compound two or more elements held together by electrical chemical bonds

Physical Properties

- Extensive properties - depend on the amount of matter present
- mass, length, volume, etc. . .
- Intensive properties - do not depend on the amount of matter present
- Density, malleability, ductility, conductivity, melting, freezing, boiling, and color
- Physical change - in a physical change the same substance is there before and after
- examples: melting, boiling, cutting, solubility

Chemical properties -

- how substances respond in the presents of other substances
- Chemical change is the change that takes place after a substance reacts with another substance.
- Examples burning, digestion, fermenting, rusting

Energy transfer

- Physical and chemical changes are all accompanied by energy changes.
- Energy transferred due to temperature difference is called heat (q)

THERMODYNAMICS

THE HEAT ENERGY OF A REACTION

What is the difference between heat and temperature?

Temperature is the measure of heat. Heat is the energy caused by kinetic molecular motion.

HEAT OF A REACTION

- $\operatorname{SYMBOL}=\triangle H$
- + ENERGY IS ENDOTHERMIC
- - ENERGY IS EXOTHERMIC
- ex. ENDO......A COLD PACK
- ex. EXO. ...A MATCH

SYMBOLS

- $\mathbf{Q}=$ quantity of heat
- WHEN $\mathrm{Q}<0$,then the reaction is exothermic.
- WHEN $Q>0$, then the reaction is endothermic.

TERMS TO KNOW:

- Specific heat-
- Joule-
- Heat of fusion-
- Heat of vaporization-

Constants

$>$ Specific heat of water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$>$ Heat of fusion of water= 340 . Joules/gram
$>$ Heat of vaporization $=2260$ Joules/gram

Calculating the heat of a system

- $\mathrm{Q}=\mathrm{mCp} \mathrm{\Delta T}$
- $\mathrm{Q}=$ quantity of heat in a reaction / joules
- $m=$ mass of the substance/ grams
- $\mathrm{Cp}=$ specific heat/ Joules/gram-degree Celsius
- $\Delta \mathrm{T}=$ change in temperature/ degrees Celsius

PRACTICE

- How much heat is gained when 56.0 grams of water at $33.0^{\circ} \mathrm{C}$ rises to $83.0^{\circ} \mathrm{C}$?? Round off!!

Yet more:

- How much heat is lost when 15.0 grams of water at $65.0^{\circ} \mathrm{C}$ cools to $15.0^{\circ} \mathrm{C}$?

Using a different variable

- The quantity of heat gained by water when it rises from $12.0^{\circ} \mathrm{C}$ to $86.0^{\circ} \mathrm{C}$ is 12,000 Joules. Find the mass of the water.

Yet another variable:

- $\mathbf{Q}=\mathbf{m C p}\left(\mathrm{Tf}-\mathrm{T}_{\mathrm{i}}\right)$
- Do the algebra
- What is final temperature of a system when 35.0 grams of water at $12.0^{\circ} \mathrm{C}$ uses 1150 Joules to raise its temperature?

Work this problem:

- 125 grams of water loses -21,200 Joules heat and falls to $15.0^{\circ} \mathrm{C}$. Find its initial temperature.

Review:

- How much heat is gained when 68.3 grams of water rises from $15.0^{\circ} \mathrm{C}$ to $89.0^{\circ} \mathrm{C}$?
- Find the initial temperature of 14.8 grams water if -565 joules of energy are lost and the final temperature is $22.0^{\circ} \mathrm{C}$.

Solution,Equations,and Constants For Phase

Change Problems

- Constants:
- $\mathrm{H}_{\mathrm{f}}=340$. Joules/gram
- $H_{v}=2260$ Joules/gram
- $0.00^{\circ} \mathrm{C}, 273 \mathrm{~K}=$ freezing/melting point of water
- $100 .^{\circ} \mathrm{C}, 373 \mathrm{~K}=$ boiling point of water
- Specific heat of ice/steam $=2.10 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$
- Equations:
- $\mathrm{Q}=\mathrm{mCp} \mathrm{\Delta T}$ for a temperature change
$\mathbf{Q}=\mathbf{m H}_{\mathrm{f}}$ for a phase change or
$\mathrm{Q}=\mathrm{mH}_{\mathrm{v}}$ for a phase change

ANOTHER TYPE OF PROBLEM

- How much heat is gained when 35.0 grams of ice at $-55.0^{\circ} \mathrm{C}$ changes to steam at $145^{\circ} \mathrm{C}$?
- This is a phase change problem and must be done in steps.

Yet another one!!

- How much energy is needed to raise 42 grams of ice at $-5.00^{\circ} \mathrm{C}$ to water at $85.0^{\circ} \mathrm{C}$?
- $\mathrm{FP}=0.00^{\circ} \mathrm{C}$
- $\mathrm{Hf}=340 . \mathrm{j} / \mathrm{g}$
- S.H. $=\mathbf{2 . 1 0 J} / \mathrm{g}^{\circ} \mathrm{C}$ for ice

Another example

- How much heat is lost when 78.0 grams of steam at $150 .{ }^{\circ} \mathrm{C}$ cools and solidifies to ice at $0.0^{\circ} \mathrm{C}$?
- List the steps that occur.
- $H_{v}=2260 \mathrm{~J} / \mathrm{g}$
- Boiling point/condensing point $=100.0^{\circ} \mathrm{C}$
- Specific heat of steam and ice $=2.10 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Solution

A non-water problem

- What is the total heat needed to take
- 55.0 grams of solid iron at $22.0^{\circ} \mathrm{C}$ to molten iron at $1600 .{ }^{\circ} \mathrm{C}$.
- Melting point $=1535^{\circ} \mathrm{C}$
- Specific heat - all phases
$=.448 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- Heat of fusion $=266 \mathrm{~J} / \mathrm{g}$

Calorimeter

- Purpose to measure heat change
- Uses water and calculates heat change because heat gained is equal to heat lost.

More:

- Suppose a piece of iron with a mass of $\mathbf{2 1 . 5}$ grams at a temperature of $100.0^{\circ} \mathrm{C}$ is dropped into an insulated container of water. The mass of water is $\mathbf{1 3 2}$ grams and its temperature before adding the the iron is $20 . \mathbf{0}^{\circ} \mathrm{C}$. What will be the final temperature of the system?
- Solving process:
- We know that heat lost must equal the heat gained. Since iron is at a higher temperature the the water, the iron will lose energy. The water will gain an equivalent amount of energy.
- Specific heat of iron is $0.448 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Solution

- Heat gained is equal to heat lost
- $Q_{1}=-Q_{2}$
- $\left(m_{1}\right)\left(C p_{1}\right)\left(\Delta T_{1}\right)=-\left(m_{2}\right)\left(C p_{2}\right)\left(\Delta T_{2}\right)$
- Use algebra and solve for temperature final

