Naming compounds and writing formulas

Go over periodic chart.

Symbols

- Symbols are a shorthand way of writing elements.
- Some of the symbols originate from the Greek or Latin name
- Chemical formulas are combinations of symbols to represent a compound

Subscripts

- Subscripts are the small number after the symbol that indicates the number of that type of atom in a compound.
- Example: H₂O means that there is 2 hydrogen to 1 oxygen
- Oxidation numbers are numbers assigned to different elements to determine the ratio in which the combine (the combining ability of the atom)

Ions

- Ion is an atom that has gained or lost electrons thus having an electric charge
- Polyatomic ion is an ion that is made of two or more atoms together that act as one ion.
- Ionic compound is the result of two ions combining

Molecules

- Molecules are when two or more neutral atoms combine by sharing atoms
- Diatomic molecules are atoms that combine with them such as $Cl_2, O_2 \dots$
 - The 7 + Hydrogen

Writing Chemical Formulas

- The sum of the oxidation numbers must equal zero
 - Put the positive oxidation # first
 - Fe₂O₃, H₂O, NaCl
 - NH_4OH , $Ba(NO_3)_2$

Naming compounds

- Put the + oxidation # first
- Change the name of the negative oxidation by adding the suffix ide
- Exception is when naming compounds that all the atoms are negative oxidation #s
- Atoms with more than one oxidation state are named by using roman numerals to indicate the oxidation state. Example: Iron (III) oxide

Naming Compounds

Binary Ionic Compounds:

- 1. Cation first, then anion
- 2. Monatomic cation = name of the element

3. Monatomic anion = root + -ide
Cl⁻ = chloride
CaCl₂ = calcium chloride

Naming Binary Ionic Compounds

Examples:
NaClsodium chlorideZnI2zinc iodideAl2O3aluminum oxide

Learning Check

Complete the names of the following binary compounds:

Na₃NsodiumKBrpotassiumAl₂O₃aluminumMgS

Transition Metals

Elements that can have more than one possible charge MUST have a Roman Numeral to indicate the charge on the individual ion.

<u>1+ or 2+</u>	2+ or 3+
Cu ⁺ , Cu ²⁺	Fe ²⁺ , Fe ³⁺
copper(I) ion	iron(II) ion
copper (II) ion	iron(III) ion

Names of Variable Ions

These elements REQUIRE Roman Numerals because they can have more than one possible charge: anything except Group 1A, 2A, Ag, Zn, Cd, and Al

(You should already know the charges on these!)

Or another way to say it is: Transition metals and the metals in groups 4A and 5A (except Ag, Zn, Cd, and Al) require a Roman Numeral.

FeCl ₃	(Fe ³⁺)	iron (III) chloride
CuCl	(Cu ⁺)	copper (I) chloride
SnF ₄	(Sn ⁴⁺)	tin (IV) fluoride
PbCl ₂	(\mathbf{Pb}^{2+}) lead ((II) chloride
Fe_2S_3	(Fe ³⁺) iron ((III) sulfide

Examples of Older Names of Cations formed from Transition Metals

TABLE 4.2		
Common Type II Cat	ions	
lon	Systematic Name	Older Name
Fe ³⁺	iron(III)	ferric
Fe ²⁺	iron(II)	ferrous
Cu ²⁺	copper(II)	cupric
Cu^+	copper(l)	cuprous
Co ³⁺	cobalt(III)	cobaltic
Co ²⁺	cobalt(II)	cobaltous
Sn ⁴⁺	tin(IV)	stannic
Sn ²⁺	tin(II)	stannous
Pb^{4+}	lead(IV)	plumbic
Pb^{2+}	lead(II)	plumbous
Hg^{2+}	mercury(II)	mercuric
Hg_2^{2+*}	mercury(I)	mercurous

*Mercury(I) ions always occur bound together in pairs to form Hg_2^{2+} .

Learning Check

Complete the names of the following binary compounds with variable metal ions:

FeBr2iron (____) bromideCuClcopper (____) chloride

SnO₂

Fe₂O₃

Hg₂S

NO₂nitrite ion

Ternary Ionic Nomenclature Writing Formulas

- Write each ion, cation first. Don't show charges in the final formula.
- Overall charge must equal zero.

 If charges cancel, just write symbols.
 If not, use subscripts to balance charges.
- Use parentheses to show more than one of a particular polyatomic ion.
- Use Roman numerals indicate the ion's charge when needed (stock system)

Ternary Ionic Nomenclature Sodium Sulfate Na⁺ and SO₄ ⁻² Na₂SO₄

Iron (III) hydroxide Fe⁺³ and OH⁻ Fe(OH)₃

Ammonium carbonate NH₄⁺ and CO₃⁻² (NH₄)₂CO₃

Learning Check

- 1. aluminum nitrate
 - a) $AINO_3$ b) $AI(NO)_3$ c) $AI(NO_3)_3$
- 2. copper(II) nitrate
 - a) $CuNO_3$ b) $Cu(NO_3)_2$ c) $Cu_2(NO_3)$
- 3. Iron (III) hydroxide
 - a) FeOH b) Fe₃OH
- 4. Tin(IV) hydroxide

a) $Sn(OH)_4$ b) $Sn(OH)_2$

c) Sn₄(OH)

c) $Fe(OH)_3$

Naming Ternary Compounds

- Contains at least 3 elements
- There MUST be at least one polyatomic ion (it helps to circle the ions)
- Examples:

NaNO₃

 K_2SO_4

 $Al(HCO_3)_3$

- Sodium nitrate
- Potassium sulfate
- **Aluminum bicarbonate**
- or

Aluminum hydrogen carbonate

Learning Check

- Match each set with the correct name:
- 1. Na₂CO₃
 MgSO₃
 MgSO₄
 a) magnesium sulfite
 b) magnesium sulfate
 c) sodium carbonate
- 2. Ca(HCO₃)₂ a) calcium carbonate
 - CaCO₃
 b) calcium phosphate
 Ca₃(PO₄)₂
 c) calcium bicarbonate

Mixed Practice!

Name the following:

- 1. Na₂O
- 2. $CaCO_3$
- 3. PbS₂
- 4. Sn_3N_2
- 5. Cu_3PO_4
- 6. HgF_2

Mixed Up... The Other Way

Write the formula:

- 1. Copper (II) chlorate
- 2. Calcium nitride
- 3. Aluminum carbonate
- 4. Potassium bromide
- 5. Barium fluoride
- 6. Cesium hydroxide

CH₄ methane

BCI₃ boron trichloride and nonmetal (NaCI)

Molecular (Covalent) Nomenclature for two nonmetals

- **Prefix System** (binary compounds)
 - 1. Less electronegative atom comes first.
 - 2. Add prefixes to indicate # of atoms. Omighe Belleville prefix on the FIRST element. Mono- is OPTIONAL on the SECOND element (in this class, it's NOT optional!).
 - 3. Change the ending of the second element to -ide.

Molecular Nomenclature Prefixes

PREFIX	NUMBER
mono-	ĺ
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

The Old System

- The old system that named some compounds such as Carbon dioxide use prefixes to indicate the number of atoms
- Prefixes: mono-1, di-2, tri-3, tetra-4, etc. .
 - •

Molecular Nomenclature: Examples

• CCl₄

-carbon tetrachloride

• N₂O

-dinitrogen monoxide

• **SF**₆

-sulfur hexafluoride

More Molecular Examples

- arsenic trichloride
 - $-AsCl_3$
- dinitrogen pentoxide
 - $-N_2O_5$
- tetraphosphorus decoxide
 - $-P_4O_{10}$

Learning Check

Fill in the blanks to complete the following names of covalent compounds.

CO	carbon	oxide
CO ₂	carbon	
PCl ₃	phosphorus	chloride
CCl ₄	carbon	_chloride
N ₂ O	nitrogen	oxide

Learning Check

- 1. P₂O₅ a) phosphorus oxide
 - b) phosphorus pentoxide
 - c) diphosphorus pentoxide

- $2. \quad Cl_2O_7$
- a) dichlorine heptoxide
 b) dichlorine oxide
 c) chlorine heptoxide

3. Cl₂

- a) chlorine
- b) dichlorine
- c) dichloride

A flow chart for naming binary compounds.

Mixed Review

Name the following compounds:

- **1. CaO**
 - a) calcium oxide
 - c) calcium (II) oxide
- $2. SnCl_4$
 - a) tin tetrachloride
 - c) tin(IV) chloride

b) tin(II) chloride

b) calcium(I) oxide

- $3. N_2O_3$
 - a) nitrogen oxide b) dinitrogen trioxide
 - c) nitrogen trioxide

Solution

Name the following compounds:

- 1.CaOa) calcium oxide
- 2. $SnCl_4$ c) tin(IV) chloride
- 3. N_2O_3 b) Dinitrogen trioxide

Mixed Practice

- 1. Dinitrogen monoxide
- 2. Potassium sulfide
- 3. Copper (II) nitrate
- 4. Dichlorine heptoxide
- 5. Chromium (III) sulfate
- 6. Iron (III) sulfite
- 7. Calcium oxide
- 8. Barium carbonate
- 9. Iodine monochloride

Mixed Practice

- 1. BaI₂
- 2. P_4S_3
- 3. Ca(OH)₂
- 4. $FeCO_3$
- 5. $Na_2Cr_2O_7$
- 6. I₂O₅
- 7. $Cu(ClO_4)_2$
- 8. CS₂
- 9. B_2Cl_4

Acid Nomenclature

- Acids
 - Compounds that form H⁺ in water.
 - Formulas usually begin with 'H'.
 - In order to be an acid instead of a gas, binary acids must be aqueous (dissolved in water)
 - Ternary acids are ALL aqueous
- Examples:
 - HCl $_{(aq)}$ hydrochloric acid
 - HNO₃ nitric acid
 - $-H_2SO_4$ sulfuric acid

Acid Nomenclature Anion Ending Acid Name hydro-(stem)-ic acid -ide Binary \rightarrow (stem)-*ic acid* -ate Ternary -ite (stem)-ous acid

Acid Nomenclature

- HBr (aq)
 - -2 elements, $-ide \implies hydrobromic$ acid
- H₂CO₃
 - -3 elements, $-ate \implies carbonic$ acid
- H₂SO₃
 - -3 elements, -*ite* \Rightarrow sulfurous acid

Acid Nomenclature

hydrofluoric acid

- $-2 \text{ elements} \implies H^+ \text{F-} \implies \text{HF}_{(aq)}$
- sulfuric acid
 - $-3 \text{ elements}, -ic \implies H^+ SO_4^{2-} \implies H_2SO_4$
- nitrous acid
 - $-3 \text{ elements}, -ous \implies H^+ NO_2^- \implies HNO_2$

Name 'Em!

- HI _(aq)
- HCl
- H_2SO_3
- HNO₃
- HIO₄

Write the Formula!

- Hydrobromic acid
- Nitrous acid
- Carbonic acid
- Phosphoric acid
- Hydrotelluric acid

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound.

Molecular formula: the true number of atoms of each element in the formula of a compound.

molecular formula = (empirical formula)_n [n = integer]
 molecular formula = C₆H₆ = (CH)₆
 empirical formula = CH

Formulas (continued)

Formulas for ionic compounds are <u>ALWAYS</u> empirical (lowest whole number ratio).

Examples: NaCl MgCl₂ $Al_2(SO_4)_3$ K_2CO_3

Formulas (continued)

Formulas for molecular compounds <u>MIGHT</u> be empirical (lowest whole number ratio).

