Naming compounds and writing formulas

Go over periodic chart.

Symbols

- Symbols are a shorthand way of writing elements.
- Some of the symbols originate from the Greek or Latin name
- Chemical formulas are combinations of symbols to represent a compound

Subscripts

- Subscripts are the small number after the symbol that indicates the number of that type of atom in a compound.
- Example: $\mathbf{H}_{2} \mathbf{O}$ means that there is 2 hydrogen to 1 oxygen
- Oxidation numbers - are numbers assigned to different elements to determine the ratio in which the combine (the combining ability of the atom)

Ions

- Ion is an atom that has gained or lost electrons thus having an electric charge
- Polyatomic ion is an ion that is made of two or more atoms together that act as one ion.
- Ionic compound is the result of two ions combining

Molecules

- Molecules are when two or more neutral atoms combine by sharing atoms
- Diatomic molecules are atoms that combine with them such as $\mathbf{C l}_{2}, \mathbf{O}_{2}$. . .
- The 7 + Hydrogen

Writing Chemical Formulas

- The sum of the oxidation numbers must equal zero
- Put the positive oxidation \# first
$-\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathbf{O}, \mathrm{NaCl}$
$-\mathrm{NH}_{4} \mathrm{OH}, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Naming compounds

- Put the + oxidation \# first
- Change the name of the negative oxidation by adding the suffix ide
- Exception is when naming compounds that all the atoms are negative oxidation \#s
- Atoms with more than one oxidation state are named by using roman numerals to indicate the oxidation state. Example: Iron (III) oxide

Naming Compounds

Binary Ionic Compounds:

- 1. Cation first, then anion
- 2. Monatomic cation = name of the element

$$
\text { - } \mathrm{Ca}^{2+}=\text { calcium ion }
$$

- 3. Monatomic anion = root + -ide

$$
\begin{gathered}
\cdot \mathrm{Cl}^{-}=\text {chloride } \\
\cdot \mathrm{CaCl}_{2}=\text { calcium chloride }
\end{gathered}
$$

Naming Binary Ionic Compounds

Examples:

NaCl

sodium chloride

$\mathbf{Z n I}_{\mathbf{2}} \quad$ zinc iodide
$\mathrm{Al}_{2} \mathrm{O}_{3}$
aluminum oxide

Learning Check

Complete the names of the following binary compounds:
$\mathrm{Na}_{3} \mathrm{~N}$
sodium
KBr
potassium
aluminum
MgS

Transition Metals

Elements that can have more than one possible charge MUST have a Roman Numeral to indicate the charge on the individual ion. $1+$ or $2+\quad 2+$ or $3+$
$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$

Names of Variable Ions

These elements REQUIRE Roman Numerals because they can have more than one possible charge:
anything except Group $1 \mathrm{~A}, 2 \mathrm{~A}, \mathrm{Ag}, \mathrm{Zn}, \mathrm{Cd}$, and Al
(You should already know the charges on these!)
Or another way to say it is: Transition metals and the metals in groups 4A and 5A (except Ag, Zn, Cd, and Al) require a Roman Numeral.
FeCl_{3}
$\left(\mathrm{Fe}^{3+}\right)$
CuCl
$\left(\mathbf{C u}^{+}\right)$
($\mathbf{S n}^{4+}$)
iron (III) chloride
SnF_{4}
PbCl_{2}
$\mathrm{Fe}_{2} \mathrm{~S}_{3}$
(Fe^{3+}) iron (III) sulfide

Examples of Older Names of Cations formed from Transition Metals

TABLE 4.2

Common Type II Cations

Ion	Systematic Name	Older Name
Fe^{3+}	iron(III)	ferric
Fe^{2+}	iron(II)	ferrous
Cu^{2+}	copper(II)	cupric
Cu^{+}	copper(I)	cuprous
Co^{3+}	cobalt(III)	cobaltic
Co^{2+}	cobalt(II)	cobaltous
Sn^{4+}	tin(IV)	stannic
Sn^{2+}	tin(II)	stannous
Pb^{4+}	lead(IV)	plumbic
Pb^{2+}	lead(II)	plumbous
Hg^{2+}	mercury(II)	mercuric
$\mathrm{Hg}_{2}{ }^{2+*}$	mercury(I)	mercurous

*Mercury(I) ions always occur bound together in pairs to form $\mathrm{Hg}_{2}{ }^{2+}$.

Learning Check

Complete the names of the following binary compounds with variable metal ions:
FeBr_{2}
CuCl
SnO_{2}
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
$\mathbf{H g}_{2} \mathbf{S}$ iron (___) bromide
copper (___) chloride

 -

Polyaromic Ions
$\mathrm{NO}_{3}{ }^{-}$ nitrate ion

$\mathrm{NO}_{2}{ }^{-}$ nitrite ion

Ternary Ionic Nomenclature Writing Formulas

- Write each ion, cation first. Don't show charges in the final formula.
- Overall charge must equal zero.
- If charges cancel, just write symbols. - If not, use subscripts to balance charges.
- Use parentheses to show more than one of a particular polyatomic ion.
- Use Roman numerals indicate the ion's charge when needed (stock system)

Ternary Ionic Nomenclature

Sodium Sulfate
Na^{+}and $\mathrm{SO}_{4}{ }^{-2}$ $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Iron (III) hydroxide Fe^{+3} and OH^{-} $\mathrm{Fe}(\mathrm{OH})_{3}$

Ammonium carbonate
$\mathrm{NH}_{4}{ }^{+}$and $\mathrm{CO}_{3}{ }^{-2}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Learning Check

1. aluminum nitrate
a) AlNO_{3}
b) $\mathrm{Al}(\mathrm{NO})_{3}$
c) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
2. copper(II) nitrate
a) CuNO_{3}
b) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)$
3. Iron (III) hydroxide
a) FeOH
b) $\mathrm{Fe}_{3} \mathrm{OH}$
c) $\mathrm{Fe}(\mathrm{OH})_{3}$
4. Tin(IV) hydroxide
a) $\mathrm{Sn}(\mathrm{OH})_{4}$
b) $\mathrm{Sn}(\mathrm{OH})_{2}$
c) $\mathrm{Sn}_{4}(\mathrm{OH})$

Naming Ternary Compounds

- Contains at least 3 elements
- There MUST be at least one polyatomic ion
(it helps to circle the ions)
- Examples:
NaNO_{3}
$\mathbf{K}_{\mathbf{2}} \mathrm{SO}_{4}$
$\mathrm{Al}\left(\mathrm{HCO}_{3}\right)_{3}$

Sodium nitrate
Potassium sulffate
Aluminum bicarlbonate
or
Aluminum hydrogen carlbonate

Learning Check

Match each set with the correct name:

\author{

1. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
 MgSO_{3}
 MgSO_{4}
}
a) magnesium sulfite
b) magnesium sulfate
c) sodium carbonate
2. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ carbonate

$$
\begin{array}{ll}
\mathbf{C a C O}_{3} & \text { b) calcium phosphate } \\
\mathbf{C a}_{\mathbf{3}}\left(\mathbf{P O}_{4}\right)_{2} & \text { c) calcium bicarbonate }
\end{array}
$$

Mixed Practice!

Name the following:

1. $\mathrm{Na}_{2} \mathrm{O}$
2. CaCO_{3}
3. PbS_{2}
4. $\mathrm{Sn}_{3} \mathrm{~N}_{2}$
5. $\mathrm{Cu}_{3} \mathrm{PO}_{4}$
6. HgF_{2}

Mixed Up... The Other Way

Write the formula:

1. Copper (II) chlorate
2. Calcium nitride
3. Aluminum carbonate
4. Potassium bromide
5. Barium fluoride
6. Cesium hydroxide

Naming Molecular

Compounds

CH_{4} methane

All are formed from two or more nonmetals.

Ionic compounds generally involve a metal and nonmetal (NaCl)

Molecular (Covalent) Nomenclature

for two nonmetals

- Prefix System (binary compounds)

1. Less electronegative atom comes first.
2. Add prefixes to indicate \# of atoms. Omi prefix on the FIRST element. Mono- is OPTIONAL on the SECOND element (in this class, it's NOT optional!).
3. Change the ending of the second element to -ide.

Molecular Nomenclature Prefixes

PREFIX
NUMBER
mono-di-2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- 9
deca- 10

The Old System

- The old system that named some compounds such as Carbon dioxide use prefixes to indicate the number of atoms
- Prefixes: mono-1, di-2, tri-3, tetra-4, etc. .

Molecular Nomenclature: Examples

- CCl_{4}
- carbon tetrachloride
- $\mathrm{N}_{2} \mathrm{O}$
- dinitrogen monoxide
- $\mathbf{S F}_{6}$
- sulfur hexafluoride

More Molecular Examples

- arsenic trichloride
$-\mathrm{AsCl}_{3}$
- dinitrogen pentoxide
$-\mathrm{N}_{2} \mathrm{O}_{5}$
- tetraphosphorus decoxide
$-\mathrm{P}_{4} \mathrm{O}_{10}$

Learning Check

Fill in the blanks to complete the following names of covalent compounds.
CO
CO_{2}
PCl_{3}
CCl_{4}
$\mathrm{~N}_{2} \mathrm{O}$
carbon \qquad

carbon

phosphorus \qquad
carbon

____nitrogen \qquad oxide

Learning Check

1. $\mathrm{P}_{2} \mathrm{O}_{5}$
a) phosphorus oxide
b) phosphorus pentoxide
c) diphosphorus pentoxide
2. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
a) dichlorine heptoxide
b) dichlorine oxide
c) chlorine heptoxide
3.

Cl_{2}
a) chlorine
b) dichlorine
c) dichloride

A flow chart for naming binary compounds.

Mixed Review

Name the following compounds:

1. $\mathbf{C a O}$
a) calcium oxide
b) calcium(I) oxide
c) calcium (II) oxide
2. $\mathbf{S n C l}_{4}$
a) tin tetrachloride
b) tin(II) chloride
c) $\operatorname{tin}(I V)$ chloride
3. $\mathbf{N}_{2} \mathbf{O}_{3}$
a) nitrogen oxide b) dinitrogen trioxide
c) nitrogen trioxide

Solution

Name the following compounds:

1. CaO
a) calcium oxide
2. SnCl_{4}
c) tin(IV) chloride
3.

$\mathbf{N}_{2} \mathrm{O}_{3}$
b) Dinitrogen trioxide

Mixed Practice

1. Dinitrogen monoxide
2. Potassium sulfide
3. Copper (II) nitrate
4. Dichlorine heptoxide
5. Chromium (III) sulfate
6. Iron (III) sulfite
7. Calcium oxide
8. Barium carbonate
9. Iodine monochloride

Mixed Practice

1. BaI_{2}
2. $\mathrm{P}_{4} \mathrm{~S}_{3}$
3. $\mathrm{Ca}(\mathrm{OH})_{2}$
4. FeCO_{3}
5. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
6. $\mathrm{I}_{2} \mathrm{O}_{5}$
7. $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$
8. CS_{2}
9. $\mathrm{B}_{2} \mathrm{Cl}_{4}$

Acid Nomenclature

- Acids
- Compounds that form H^{+}in water.
- Formulas usually begin with 'H'.
- In order to be an acid instead of a gas, binary acids must be aqueous (dissolved in water)
- Ternary acids are ALL aqueous
- Examples:
$-\mathrm{HCl}_{(\mathrm{aq})}$ - hydrochloric acid
- HNO_{3} - nitric acid
$-\mathrm{H}_{2} \mathrm{SO}_{4}-$ sulfuric acid

Acid Nomenclature Anion
 Ending Acid Name

Binary $\rightarrow \quad$-ide
hydro-(stem)-ic acid
Ternary $工 \begin{gathered}\text {-ate } \\ \text {-ite }\end{gathered}$
(stem)-ic acid
(stem)-ous acid

Acid Nomenclature Flowchart ACIDS
 start with 'H'

2 elements

3 elements
hydro- prefix -ic ending

> -ate ending becomes -ic ending

Acid Nomenclature

- $\mathbf{H B r}_{(\mathrm{aq})}$
-2 elements, -ide
\Rightarrow hydrobromic acid
- $\mathrm{H}_{2} \mathrm{CO}_{3}$
-3 elements, -ate $\quad \Rightarrow \quad$ carbonic acid
- $\mathrm{H}_{2} \mathrm{SO}_{3}$
-3 elements, -ite $\quad \Rightarrow \quad$ sulfurous acid

Acid Nomenclature

- hydrofluoric acid
-2 elements $\quad \Rightarrow \mathrm{H}^{+} \mathrm{F}-\quad \Rightarrow \mathrm{HF}_{(\mathrm{aq})}$
- sulfuric acid
-3 elements, $-i c \quad \Rightarrow \mathrm{H}^{+} \mathrm{SO}_{4}{ }^{2-} \quad \Rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
- nitrous acid
-3 elements, -ous $\Rightarrow \mathrm{H}^{+} \mathrm{NO}_{2}^{-} \quad \Rightarrow \mathrm{HNO}_{2}$

Name ‘Em!

- $\mathrm{HI}_{\text {(aq) }}$
- HCl
- $\mathrm{H}_{2} \mathrm{SO}_{3}$
- HNO_{3}
- HIO_{4}

Write the Formula!

- Hydrobromic acid
- Nitrous acid
- Carbonic acid
- Phosphoric acid
- Hydrotelluric acid

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound.
Molecular formula: the true number of atoms of each element in the formula of a compound.
\square molecular formula $=($ empirical
formula $)_{n}[n=$ integer $]$
molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}=$
$(\mathrm{CH})_{6}$
empirical formula $=\mathrm{CH}$

Formulas (continued)

Formulas for ionic compounds are ALWAYS empirical (lowest whole number ratio).

Examples:
NaCl
MgCl_{2}
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{K}_{2} \mathrm{CO}_{3}$

Formulas (continued)

Formulas for molecular compounds MIGHT be empirical (lowest whole number ratio).

Molecular:

Empirical:

$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

