The Mole

Molecular mass and formula mass

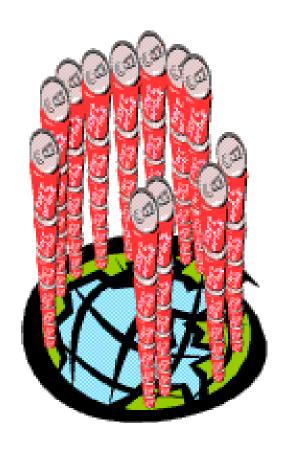
- Atomic mass unit is the standard for measuring mass of atoms or compounds.
 - Atomic mass unit (amu) Dalton
- Molecular mass refers to the mass of a molecule
- Formula mass is the mass of an ionic compound

Avagadro's Number

- is based on the amount of mass in grams that 1 amu is equal to
 - $-1 \text{ amu} = 1.6606 \text{ x } 10^{-24} \text{g}$
 - Oxygen has a mass of 16 amu,
 - so 16 amu x 1.6606 x 10^{24g} /1amu gives the mass of one O atom at 2.657 x 10^{-23} grams,
 - and 16 g O x 1atom O / 2.657×10^{-23} g = 6.022×10^{23} atoms
 - 6.022 x 10²³ atoms is Avogadro's number

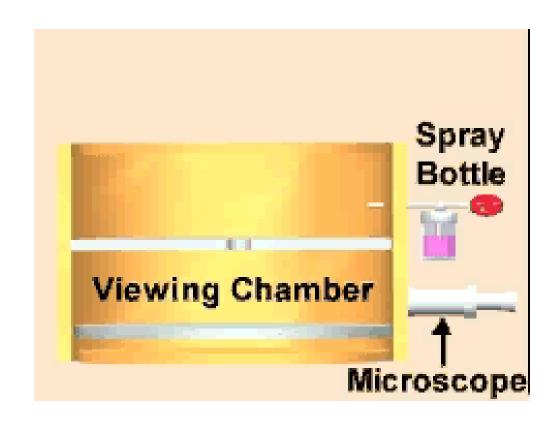
The Mole

6.02 X 10²³



The Mole

- A counting unit
- Similar to a dozen, except instead of 12, it's 602 billion trillion 602,000,000,000,000,000,000
- 6.02 X 10²³ (in scientific notation)
- This number is named in honor of Amedeo _____ (1776 1856), who studied quantities of gases and discovered that no matter what the gas was, there were the same number of molecules present


Just How Big is a Mole?

- Enough soft drink cans to cover the surface of the earth to a depth of over 200 miles.
- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the United States of America, the country would be covered in popcorn to a depth of over 9 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

Everybody Has Avogadro's Number! But Where Did it Come From?

- It was NOT just picked!
 It was MEASURED.
- One of the better methods of measuring this number was the Millikan Oil Drop Experiment
- Since then we have found even better ways of measuring using xray technology

Suppose we invented a new collection unit called a rapp. One rapp contains 8 objects.

1. How many paper clips in 1 rapp?

a) 1

b) 4

c) 8

2. How many oranges in 2.0 rapp?

a) 4

b) 8

c) 16

3. How many rapps contain 40 gummy bears?

a) 5

b) 10

c) 20

The Mole

- 1 dozen cookies = 12 cookies
- 1 mole of cookies = 6.02 X 10²³ cookies
- 1 dozen cars = 12 cars
- 1 mole of cars = $6.02 \times 10^{23} \text{ cars}$
- 1 dozen Al atoms = 12 Al atoms
- 1 mole of Al atoms = 6.02×10^{23} atoms

Note that the NUMBER is always the same, but the MASS is very different!

Mole is abbreviated mol (gee, that's a lot quicker to write, huh?)

A Mole of Particles Contains 6.02 x 10²³ particles

```
1 mole C = 6.02 \times 10^{23} C atoms
```

1 mole $H_2O = 6.02 \times 10^{23} H_2O$ molecules

1 mole NaCl = 6.02×10^{23} NaCl "molecules"

(technically, ionics are compounds not molecules so they are called formula units)

6.02 x 10²³ Na⁺ ions and

6.02 x 10²³ Cl⁻ ions

Avogadro's Number as Conversion Factor

6.02 x 10²³ particles

1 mole

1 mole

6.02 x 10²³ particles

Note that a particle could be an atom OR a molecule!

- 1. Number of atoms in 0.500 mole of Al
 - a) 500 Al atoms
 - b) $6.02 \times 10^{23} \text{ Al atoms}$
 - c) $3.01 \times 10^{23} \text{ Al atoms}$
- 2. Number of moles of S in 1.8 x 10²⁴ S atoms
 - a) 1.0 mole S atoms
 - b) 3.0 mole S atoms
 - c) 1.1 x 10⁴⁸ mole S atoms

Molar Mass

- The Mass of 1 mole (in grams)
- Equal to the numerical value of the average atomic mass (get from periodic table)

```
1 mole of C atoms = 12.0 g
```

1 mole of Mg atoms = 24.3 g

1 mole of Cu atoms = 63.5 g

Molar Mass of Molecules and Compounds

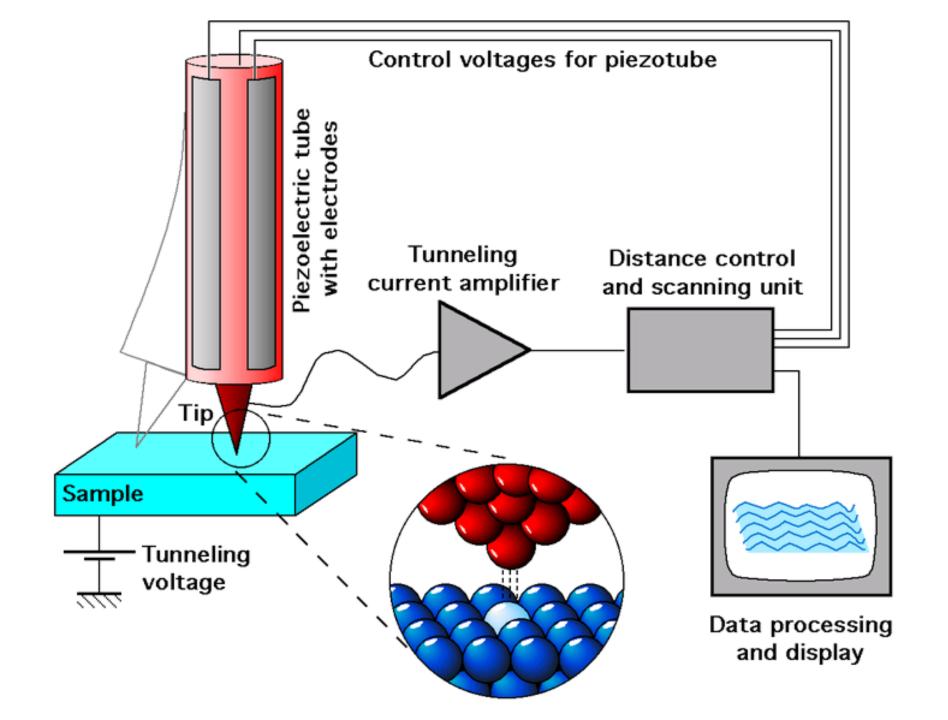
Mass in grams of 1 mole equal numerically to the sum of the atomic masses

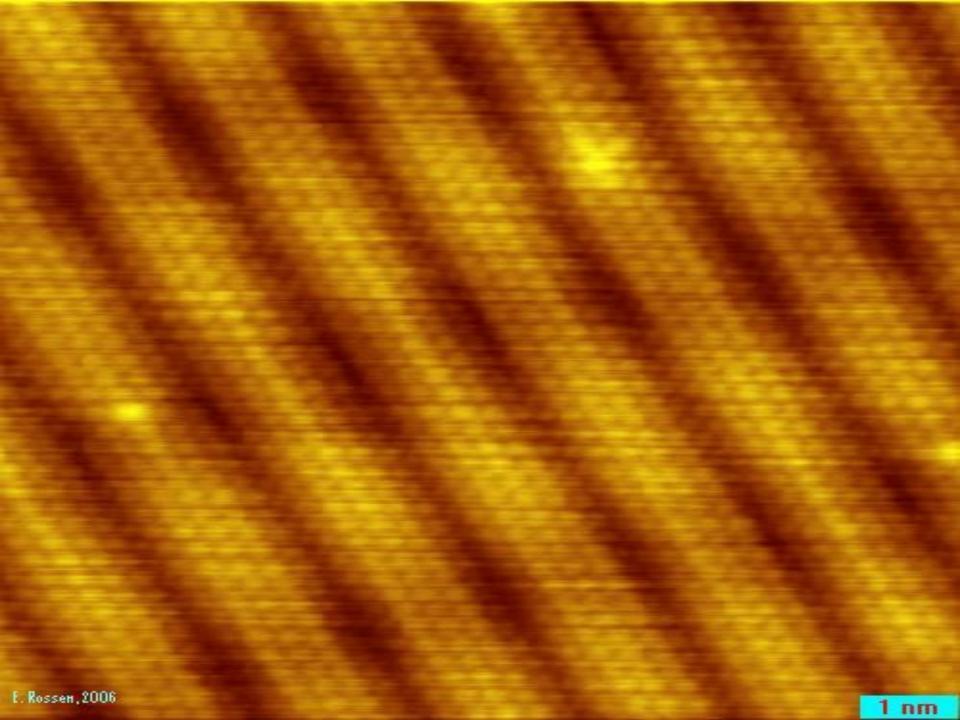
```
1 mole of CaCl<sub>2</sub> = 111.1 g/mol

1 mole Ca x 40.1 g/mol

+ 2 moles Cl x 35.5 g/mol = 111.1 g/mol CaCl<sub>2</sub>
```

1 mole of N_2O_4 = 92.0 g/mol


Find the molar mass (usually we round to the tenths place)


```
A.1 mole of Br atoms = 79.9 g/mole
```

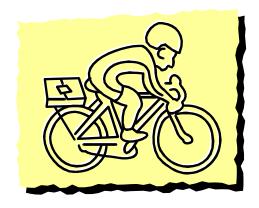
B.1 mole of Sn atoms = 118.7 g/mole

A. Molar Mass of $K_2O = ?$ Grams/mole

B. Molar Mass of antacid $Al(OH)_3 = ?$ Grams/mole

Prozac, $C_{17}H_{18}F_3NO$, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.

Calculations with Molar Mass


molar mass

Grams Moles

Converting Moles and Grams

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of Al are in 3.00 moles of Al?

3.00 moles Al \rightarrow ? g Al

1. Molar mass of Al 1 mole Al = 27.0 g Al

2. Conversion factors for Al

 27.0g Al
 or
 1 mol Al

 1 mol Al
 27.0 g Al

3. Setup 3.00 moles Al x 27.0 g Al
 1 mole Al

Answer = 81.0 g Al

The artificial sweetener aspartame (Nutra-Sweet) formula $C_{14}H_{18}N_2O_5$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in 225 g of aspartame?

Atoms/Molecules and Grams

- Since 6.02 X 10²³ particles = 1 mole AND 1 mole = molar mass (grams)
- You can convert atoms/molecules to moles and then moles to grams! (Two step process)
- You can't go directly from atoms to grams!!!! You MUST go thru MOLES.
- That's like asking 2 dozen cookies weigh how many ounces if 1 cookie weighs 4 oz? You have to convert to dozen first!

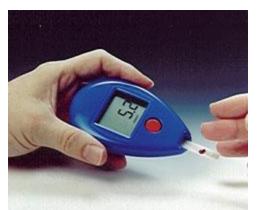
Calculations

molar mass Avogadro's number

Grams ← Moles ← particles

Everything must go through Moles!!!

Atoms/Molecules and Grams


How many atoms of Cu are present in 35.4 g of Cu?

35.4 g Cu	1 mol Cu	6.02 X 10 ²³ atoms Cu
	63.5 g Cu	1 mol-Cu

 $= 3.4 \times 10^{23} \text{ atoms Cu}$

How many atoms of K are present in 78.4 g of K?

What is the mass (in grams) of 1.20 X 10^{24} molecules of glucose ($C_6H_{12}O_6$)?

1.20 X 10 ²⁴ molecules	180 g C ₆ H ₁₂ O ₆	
	6.02 x 10 ^{23 molecules}	1 mole

How many **atoms** of O are present in 78.1 g of oxygen?

78.1 g Θ_2	1 mol O ₂	6.02 X 10 ²³ molecules O ₂	2 atoms O
	32.0 g O ₂	1 mol Θ_2	1 molecule O ₂

Percent Composition

What is the percent carbon in C₅H₈NO₄ (the glutamic acid used to make MSG monosodium glutamate), a compound used to flavor foods and tenderize meats?

- a) 8.22 %C
- b) 24.3 %C
- c) 41.1 %C

Chemical Formulas of Compounds

 Formulas give the relative numbers of atoms or moles of each element in a formula unit - always a whole number ratio (the law of definite proportions).

NO₂ 2 atoms of O for every 1 atom of N

1 mole of NO₂: 2 moles of O atoms to every 1 mole of N atoms

 If we know or can determine the relative number of moles of each element in a compound, we can determine a formula for the compound.

Types of Formulas

Empirical Formula

The formula of a compound that expresses the *smallest whole number ratio* of the atoms present.

Ionic formula are always empirical formula

Molecular Formula

The formula that states the actual number of each kind of atom found in one molecule of the compound.

To obtain an *Empirical Formula*

- 1. Determine the mass in grams of each element present, if necessary.
- 2. Calculate the number of *moles* of each element.
- 3. Divide each by the smallest number of moles to obtain the *simplest whole* number ratio.
- 4. If whole numbers are not obtained* in step 3), multiply through by the smallest number that will give all whole numbers

^{*}Be careful! Do not round off numbers prematurely

A sample of a brown gas, a major air pollutant, is found to contain 2.34 g N and 5.34g O. Determine a formula for this substance.

require mole ratios so convert grams to moles

moles of N =
$$2.34g$$
 of N = 0.167 moles of N 14.01 g/mole

moles of O = 5.34 g = 0.334 moles of O 16.00 g/mole

Formula:

$$N_{0.167}O_{0.334}$$
 $N_{0.167}O_{0.334} = NO_2$

Empirical formula - the formula giving the simplest ratio between atoms

- 1. Example: What is the empirical formula for a compound if a 2.5 g sample contains .900 g Ca and 1.6 g Cl.
 - a. First you must calculate the moles of each
 - b. $.900 \text{ g Ca x } \underline{1 \text{mol Ca}} = .0224 \text{ mole Ca}$ 40.1 g Ca
 - 1.60 g Cl x $\frac{1 \text{ mole Cl}}{38.5 \text{ g Cl}} = .0451 \text{ mole Cl}$
 - c. Then divide by the smallest #
 - a) .0224/.0224 = 1
 - b) .0451/.0224 = 2
 - d. The ration then is 2 Cl to 1 Ca so the empirical formula is CaCl₂

Calculation of the Molecular Formula

A compound has an empirical formula of NO₂. The colourless liquid, used in rocket engines has a molar mass of 92.0 g/mole. What is the *molecular* formula of this substance?

Calculating Percentage Composition

Calculate the percentage composition of magnesium carbonate, $MgCO_3$.

From previous slide:

$$24.31 g + 12.01 g + 3(16.00 g) = 84.32 g$$

$$Mg = \left(\frac{24.31}{84.32}\right) \bullet 100 = 28.83\%$$

$$C = \left(\frac{12.01}{84.32}\right) \bullet 100 = 14.24\%$$

$$O = \left(\frac{48.00}{84.32}\right) \bullet 100 = \underline{56.93\%}$$
100.00

Empirical Formula from % Composition

A substance has the following composition by mass: 60.80 % Na; 28.60 % B; 10.60 % H

What is the empirical formula of the substance?

Consider a sample size of 100 grams
This will contain 28.60 grams of B and
10.60 grams H
Determine the number of moles of each
Determine the simplest whole number ratio

Percent composition -

- the percentage of the total mass of a compound contributed by an element
 - 1. Percent composition of aluminum sulfate $Al_2(SO_4)_3$

$$2 \text{ A}1 - 2 \times 27.0 = 54.0$$

$$3 S - 3 \times 32.0 = 96.0$$

$$12 \text{ O} - 12 \text{ x } 16 = \frac{102}{342}$$

Percent Al
$$\underline{54}$$
 x 100 = 15.8 %

Percent S
$$\frac{96}{342}$$
 x 100 = 28.1 %

Percent O
$$\frac{192}{342}$$
 x $100 = 56.1 \%$

Example:

Molecular mass of benzene is 78.0 and its empirical formula is CH. What is the molecular formula

Mass of Carbon = 12

Mass of Hydrogen = 1

Mass of CH = 13

 $\frac{78}{13} = 6$

Since the ratio is 1:1 then 6 times would be 6:6 giving C_6H_6

Molecular Formula -

- shows the actual # of atoms of each element present
 - Emperical formula is given and molecular mass is given
 - Find the empirical formula mass and then divide it into the molecular mass

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

2. Divide the molecular mass by the mass given by the emipirical formula.

$$3(12.01 g) + 5(1.01) + 2(16.00) = 73.08 g$$

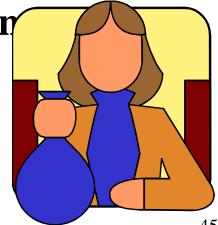
$$\frac{146}{73} = 2$$

Moles in a solution

- is called molarity which is a relationship between the moles of solute put in the volume of solvent.
- Molarity = moles/liter = moles/dm³
 - Example: What is the molarity of a 2.5 x 10² cm³ of solution containing 9.46 g CsBr?
 - $9.46g \text{ CsBr} \times 1 \text{ mole} \times 1000 \text{ cm}^3 = .178 \text{ mole/dm}^3$
 - $250 \text{ cm}^3 \qquad 213 \text{ g} \qquad \text{dm}^3$
 - = .178 M (Molar) solution
 - Example: How would you make 500 cm³ of a .133 M solution of MnSeO₄
 - $\frac{.5 \text{ dm}^3}{1 \text{ dm}^3}$ x $\frac{.133 \text{ mole}}{1 \text{ mole}}$ x $\frac{198 \text{ g}}{1 \text{ mole}} = 13.2 \text{g MnSeO}_4$

Hydrate calculation

- means it contains H₂O
 - Example Calculation: .391 g Li_2SiF_6 , .0903 g H_2O .391 g $\text{Li}_2\text{SiF}_6\text{X}$ $\frac{1 \text{ mole}}{156\text{g Li}_2\text{SiF}_6} = .00251 \text{ mole}$.0905 g H_2O X $\frac{1 \text{ mole}}{18.0 \text{ g H}_2\text{O}} = .00502 \text{ mole}$


.00502/.00251= 2:1 ratio, So the answer is $\text{Li}_2\text{SiF}_6 \cdot 2\text{H}_2\text{O}$

Molarity (M)

A concentration that expresses the moles of solute in 1 L of solution

Molarity(M) = moles of solute

1 liter solution

Units of Molarity

2.0 M HCl

= <u>2.0 moles HCl</u> 1 L HCl solution

6.0 M HCl

= <u>6.0 moles HCl</u> 1 L HCl solution

Molarity Calculation

NaOH is used to open stopped sinks, to treat cellulose in the making of nylon, and to remove potato peels commercially.

If 4.0 g NaOH are used to make 500. mL of NaOH solution, what is the molarity (M) of the solution?

Calculating Molarity

1) 4.0 g NaOH x <u>1 mole NaOH</u> = 0.10 mole NaOH 40.0 g NaOH

2) 500. mL x
$$1L$$
 = 0.500 L 1000 mL

3. <u>0.10 mole NaOH</u> 0.500 L

= 0.20 M NaOH

A KOH solution with a volume of 400 mL contains 2 mole KOH. What is the molarity of

the solution?

- 1) 8 M
- 2) 5 M
- 3) 2 M

A KOH solution with a volume of 400 mL contains 2 moles of KOH. What is the molarity

of the solution?

2) 5 M M = 2 mole KOH = 5 M 0.4 L

A glucose solution with a volume of 2.0 L contains 72 g glucose ($C_6H_{12}O_6$). If glucose has a molar mass of 180. g/mole, what is the molarity of the glucose solution?

- 1) 0.20 M
- 2) 5.0 M
- 3) 36 M

A glucose solution with a volume of 2.0 L contains 72 g glucose ($C_6H_{12}O_6$). If glucose has a molar mass of 180. g/mole, what is the molarity of the glucose solution?

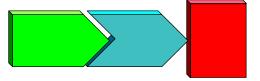
Molarity Conversion Factors

A solution is a 3.0 M NaOH. Write the molarity in the form of conversion factors.

3.0 moles NaOH and 1 L NaOH soln
1 L NaOH soln
3.0 moles NaOH

Stomach acid is a 0.10 M HCl solution. How many moles of HCl are in 1500 mL of stomach acid

solution?

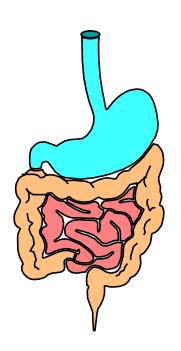

- 1) 15 moles HCl
- **2) 1.5 moles HCl**
- **3) 0.15 moles HCl**

3)
$$1500 \text{ mL x } \underline{1 \text{ L}} = 1.5 \text{ L}$$

 1000 mL

How many grams of KCl are present in 2.5 L of 0.50 M KCl?

- 1) 1.3 g
- 2) 5.0 g
- 3) 93 g



3)

How many milliliters of stomach acid, which is 0.10 M HCl, contain 0.15 mole HCl?

- 1) 150 mL
- 2) 1500 mL
- 3) 5000 mL

2) 0.15 mole HCl x <u>1 L soln</u> x <u>1000 mL</u> 0.10 mole HCl 1 L

(Molarity inverted)

= 1500 mL HCl

How many grams of NaOH are required to prepare 400. mL of 3.0 *M* NaOH solution?

- 1) 12 g
- 2) 48 g
- 3) 300 g

2) 400. mL x
$$1L$$
 = 0.400 L 1000 mL

(molar mass)

= 48 g NaOH

"Talk about trunk space, this beauty has thirteen cubic feet! That's enough room to hold more than sixteen moles of any gas at STP."