

Molecular mass and formula mass

- Atomic mass unit is the standard for measuring mass of atoms or compounds.
- Atomic mass unit (amu) Dalton
- Molecular mass refers to the mass of a molecule
- Formula mass is the mass of an ionic compound

Avagadro's Number

- is based on the amount of mass in grams that 1 amu is equal to
$-1 \mathrm{amu}=1.6606 \times 10^{-24} \mathrm{~g}$
- Oxygen has a mass of 16 amu ,
- so $16 \mathrm{amu} \times 1.6606 \times 10^{24} \mathrm{~g} / 1 \mathrm{amu}$ gives the mass of one O atom at 2.657×10^{-23} grams,
$-\quad$ and $16 \mathrm{~g} \mathrm{O} \mathrm{x} \mathrm{1atom} \mathrm{O/2.657} \mathrm{x} 10^{-23} \mathrm{~g}=6.022 \times 10^{23}$ atoms
-6.022×10^{23} atoms is Avogadro's number

The Mole

The Mole

- A counting unit
- Similar to a dozen, except instead of 12, it's 602 billion trillion 602,000,000,000,000,000,000,000
- 6.02 $\times 10^{23}$ (in scientific notation)
- This number is named in honor of Amedeo (1776-1856), who studied quantities of gases and discovered that no matter what the gas was, there were the same number of molecules present

Just How Big is a Mole?

- Enough soft drink cans to cover the surface of the earth to a depth of over 200 miles.
- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the United States of America, the country would be covered in popcorn to a depth of over 9 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

Everybody Has Avogadro's Number!
 But Where Did it Come From?

- It was NOT just picked!

It was MEASURED.

- One of the better methods of measuring this number was the Millikan Oil Drop
Experiment
- Since then we have found even better ways of measuring using x ray technology

Learning Check

Suppose we invented a new collection unit called a rapp. One rapp contains 8 objects.

1. How many paper clips in 1 rapp?
a) 1
b) 4
c) 8
2. How many oranges in 2.0 rapp?
a) 4
b) 8
c) 16
3. How many rapps contain 40 gummy bears?
a) 5
b) 10
c) 20

The Mole

- 1 dozen cookies = 12 cookies
- 1 mole of cookies $=6.02 \times 10^{23}$ cookies
- 1 dozen cars = 12 cars
- 1 mole of cars = 6.02 $\times 10^{23}$ cars
- 1 dozen Al atoms = 12 Al atoms
- 1 mole of Al atoms $=6.02 \times 10^{23}$ atoms

Note that the NUMBER is always the same, but the MASS is very different!
Mole is abbreviated mol (gee, that's a lot quicker to write, huh?)

A Mole of Particles Contains 6.02×10^{23} particles

1 mole C $=6.02 \times 10^{23} \mathrm{C}$ atoms
1 mole $\mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
1 mole $\mathrm{NaCl}=6.02 \times 10^{23} \mathrm{NaCl}$ "molecules"
(technically, ionics are compounds not molecules so they are called formula units)

$6.02 \times 10^{23} \mathrm{Na}^{+}$ions and $6.02 \times 10^{23} \mathrm{Cl}^{-}$ions

Avogadro's Number as Conversion Factor

Note that a particle could be an atom OR a molecule!

Learning Check

1. Number of atoms in 0.500 mole of Al
a) 500 Al atoms
b) $6.02 \times 10^{23} \mathrm{Al}$ atoms
c) $3.01 \times 10^{23} \mathrm{Al}$ atoms
2.Number of moles of S in $1.8 \times 10^{24} S$ atoms
a) 1.0 mole S atoms
b) 3.0 mole S atoms
c) 1.1×10^{48} mole S atoms

Molar Mass

- The Mass of 1 mole (in grams)
- Equal to the numerical value of the average atomic mass (get from periodic table)

$$
\begin{array}{ll}
1 \text { mole of C atoms } & =12.0 \mathrm{~g} \\
1 \text { mole of } \mathrm{Mg} \text { atoms } & =24.3 \mathrm{~g} \\
1 \text { mole of } \mathrm{Cu} \text { atoms } & =63.5 \mathrm{~g}
\end{array}
$$

Molar Mass of Molecules and Compounds

Mass in grams of 1 mole equal numerically to the sum of the atomic masses

1 mole of $\mathrm{CaCl}_{2}=111.1 \mathrm{~g} / \mathrm{mol}$
1 mole Ca x $40.1 \mathrm{~g} / \mathrm{mol}$
+2 moles $\mathrm{Cl} \mathrm{x}^{25.5 \mathrm{~g} / \mathrm{mol}=111.1 \mathrm{~g} / \mathrm{mol} \mathrm{CaCl}_{2}, ~}$
1 mole of $\mathrm{N}_{2} \mathrm{O}_{4} \quad=92.0 \mathrm{~g} / \mathrm{mol}$

Learning Check!

Find the molar mass
(usually we round to the tenths place)
A. 1 mole of Br atoms $=79.9 \mathrm{~g} / \mathrm{mole}$ B. 1 mole of Sn atoms $=118.7 \mathrm{~g} / \mathrm{mole}$

Learning Check!

A. Molar Mass of $\mathrm{K}_{2} \mathrm{O}=$? Grams/mole

B. Molar Mass of antacid $\mathrm{Al}(\mathrm{OH})_{3}=$? Grams/mole

Learning Check

Prozac, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.

Calculations with Molar Mass

molar mass

Grams

 Moles

Converting Moles and Grams

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of Al are in 3.00 moles of AI?
3.00 moles AI \rightarrow g AI

1. Molar mass of Al 1 mole AI = 27.0 g Al
2. Conversion factors for AI
$\frac{27.0 \mathrm{~g} \mathrm{AI}}{1 \mathrm{~mol} \mathrm{AI}}$ or $\frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}}$
3. Setup 3.00 moles AI $x \frac{27.0 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mole} \mathrm{AI}}$

Answer $=81.0 \mathrm{~g} \mathrm{Al}$

Learning Check!

The artificial sweetener aspartame (Nutra-Sweet) formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in 225 g of aspartame?

Atoms/Molecules and Grams

- Since 6.02×10^{23} particles $=1$ mole AND
1 mole = molar mass (grams)
- You can convert atoms/molecules to moles and then moles to grams! (Two step process)
- You can't go directly from atoms to grams!!!! You MUST go thru MOLES.
- That's like asking 2 dozen cookies weigh how many ounces if 1 cookie weighs 4 oz ? You have to convert to dozen first!

Calculations

molar mass Avogadro's number
 Grams \longleftrightarrow Moles \longleftrightarrow particles

Everything must go through Moles!!!

Atoms/Molecules and Grams

How many atoms of Cu are present in 35.4 g of Cu ?

35.4 g Gu	1 mot Cu	6.02×10^{23} atoms Cu
	63.5 gCu	1 moleu

$$
=3.4 \times 10^{23} \text { atoms } \mathrm{Cu}
$$

Learning Check!

How many atoms of K are present in 78.4 g of K ?

Learning Check!

What is the mass (in grams) of 1.20×10^{24} molecules of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?

1.20×10^{24} moleeutes .1 mote	$180 \mathrm{~g} \mathrm{C}_{6} \underline{H}_{12} \underline{\mathrm{O}}_{6}$
	6.02×10^{23} molectues
1 mote	

Learning Check!

How many atoms of O are present in 78.1 g of oxygen?

Percent Composition

What is the percent carbon in $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4}$ (the glutamic acid used to make MSG monosodium glutamate), a compound used to flavor foods and tenderize meats?

b) $\mathbf{2 4 . 3} \% \mathrm{C}$
c) $41.1 \% \mathrm{C}$

Chemical Formulas of Compounds

- Formulas give the relative numbers of atoms or moles of each element in a formula unit - always a whole number ratio (the law of definite proportions).
$\mathrm{NO}_{2} 2$ atoms of \mathbf{O} for every 1 atom of \mathbf{N}
1 mole of NO_{2} : 2 moles of \mathbf{O} atoms to every 1 mole of \mathbf{N} atoms
- If we know or can determine the relative number of moles of each element in a compound, we can determine a formula for the compound.

Types of Formulas

- Empirical Formula

The formula of a compound that expresses the smallest whole number ratio of the atoms present.

Ionic formula are always empirical formula

- Molecular Formula

The formula that states the actual number of each kind of atom found in one molecule of the compound.

To obtain an Empirical Formula

1. Determine the mass in grams of each element present, if necessary.
2. Calculate the number of moles of each element.
3. Divide each by the smallest number of moles to obtain the simplest whole number ratio.
4. If whole numbers are not obtained ${ }^{*}$ in step 3), multiply through by the smallest number that will give all whole numbers
*Be careful! Do not round off numbers prematurely

A sample of a brown gas, a major air pollutant, is found to contain 2.34 g N and 5.34 g 0 . Determine a formula for this substance.
require mole ratios so convert grams to moles

$$
\text { moles of } N=\frac{2.34 \mathrm{~g} \text { of } N}{14.01 \mathrm{~g} / \mathrm{mole}}=0.167 \text { moles of } N
$$

moles of $\mathrm{O}=\underline{5.34 \mathrm{~g}}=\mathbf{0 . 3 3 4}$ moles of O $16.00 \mathrm{~g} / \mathrm{mole}$

Formula:

$$
\mathrm{N}_{0.167} \mathrm{O}_{0.334} \quad \mathrm{~N}_{\frac{0.1667}{0.167}} \mathrm{O}_{\frac{0.334}{0.167}}=\mathrm{NO}_{2}
$$

Empirical formula - the formula giving the simplest ratio between atoms

- 1. Example: What is the empirical formula for a compound if a 2.5 g sample contains .900 g Ca and 1.6 g Cl .
a. First you must calculate the moles of each
b. $\quad .900 \mathrm{~g} \mathrm{Cax} \underline{1 \mathrm{~mol} \mathrm{Ca}}=.0224$ mole Ca 40.1 g Ca
$1.60 \mathrm{~g} \mathrm{Cl} \mathrm{x} \frac{1 \mathrm{~mole} \mathrm{Cl}}{38.5 \mathrm{~g} \mathrm{Cl}}=.0451 \mathrm{~mole} \mathrm{Cl}$
c. Then divide by the smallest \#
a) $.0224 / .0224=1$
b) $.0451 / .0224=2$
d. The ration then is 2 Cl to 1 Ca so the empirical formula is CaCl_{2}

Calculation of the Molecular Formula

A compound has an empirical formula of NO_{2}. The colourless liquid, used in rocket engines has a molar mass of $92.0 \mathrm{~g} / \mathrm{mole}$. What is the molecular formula of this substance?

Calculating Percentage Composition

Calculate the percentage composition of magnesium carbonate, MgCO_{3}.
From previous slide:
$24.31 \mathrm{~g}+12.01 \mathrm{~g}+3(16.00 \mathrm{~g})=84.32 \mathrm{~g}$

$$
\begin{aligned}
M g & =\left(\frac{24.31}{84.32}\right) \cdot 100=28.83 \% \\
C & =\left(\frac{12.01}{84.32}\right) \cdot 100=14.24 \% \\
O & =\left(\frac{48.00}{84.32}\right) \cdot 100=\frac{56.93 \%}{100.00}
\end{aligned}
$$

Empirical Formula from \% Composition

A substance has the following composition by mass: $\mathbf{6 0 . 8 0}$ \% Na ; $\mathbf{2 8 . 6 0}$ \% B ; $\mathbf{1 0 . 6 0} \% \mathrm{H}$

What is the empirical formula of the substance?
Consider a sample size of 100 grams
This will contain 28.60 grams of B and 10.60 grams H

Determine the number of moles of each
Determine the simplest whole number ratio

Percent composition -

- the percentage of the total mass of a compound contributed by an element

1. Percent composition of aluminum sulfate
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$2 \mathrm{Al}-2 \times 27.0=54.0$
$3 \mathrm{~S}-3 \times 32.0=96.0$
$12 \mathrm{O}-12 \times 16=\frac{102}{342}$
Percent Al $\frac{54}{342} \times 100=15.8 \%$
Percent S $\frac{96}{342} \times 100=28.1 \%$
Percent O $\frac{192}{342} \times 100=56.1 \%$

Example:

Molecular mass of benzene is 78.0 and its empirical formula is CH . What is the molecular formula
Mass of Carbon $=12$
Mass of Hydrogen $=\underline{1}$
Mass of CH

$$
=13
$$

78
$13=6$
Since the ratio is $1: 1$ then 6 times would be 6:6 giving $\mathrm{C}_{6} \mathrm{H}_{6}$

Molecular Formula -

- shows the actual \# of atoms of each element present
- Emperical formula is given and molecular mass is given
- Find the empirical formula mass and then divide it into the molecular mass

Finding the Molecular Formula

 The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molecular mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?2. Divide the molecular mass by the mass given by the emipirical formula.

$3(12.01 \mathrm{~g})+5(1.01)+2(16.00)=73.08 \mathrm{~g}$

146
$\frac{146}{73}=2$

Moles in a solution

- is called molarity which is a relationship between the moles of solute put in the volume of solvent
- Molarity $=$ moles $/$ liter $=$ moles $/ \mathrm{dm}^{3}$
- Example: What is the molarity of a $2.5 \times 10^{2} \mathrm{~cm}^{3}$ of solution containing 9.46 g CsBr ?
- Example: How would you make $500 \mathrm{~cm}^{3}$ of a .133 M solution of MnSeO_{4}
$\frac{.5 \mathrm{dm}^{3}}{} \times \frac{133 \text { mole }}{1 \mathrm{dm}^{3}} \times \frac{198 \mathrm{~g}}{1 \mathrm{~mole}}=13.2 \mathrm{~g} \mathrm{MnSeO}_{4}$

Hydrate calculation

- means it contains $\mathrm{H}_{2} \mathrm{O}$
- Example Calculation:
$.391 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SiF}_{6}, .0903 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$.391 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SiF}_{6} \mathrm{X} \frac{1 \mathrm{~mole}^{2}}{156 \mathrm{Li}_{2} \mathrm{SiF}_{6}}=.00251 \mathrm{~mole}$
$.0905 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ X $\frac{1 \mathrm{~mole}^{2}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=.00502 \mathrm{~mole}$
$.00502 / .00251=2: 1$ ratio,
So the answer is $\mathrm{Li}_{2} \mathrm{SiF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Molarity (M)

A concentration that expresses the moles of solute in $1 \mathbf{L}$ of solution

Molarity (M) $=$ moles of solute

Units of Molarity

2.0 M HCl

$=\quad 2.0$ moles $\mathbf{H C l}$
 1 LHCl solution

6.0 M HCl
$=6.0$ moles HCl
1 LHCl solution

Molarity Calculation

NaOH is used to open stopped sinks, to treat cellulose in the making of nylon, and to remove potato peels commercially.

If 4.0 g NaOH are used to make $500 . \mathrm{mL}$ of NaOH solution, what is the molarity (M) of the solution?

Calculating Molarity

1) $4.0 \mathrm{~g} \mathrm{NaOH} \times 1 \mathrm{~mole} \mathbf{N a O H}=0.10 \mathrm{~mole} \mathrm{NaOH}$ 40.0 g NaOH

2) $\mathbf{5 0 0} \mathrm{mL} \times \underline{\mathbf{1}}=0.500 \mathrm{~L}$
1000 mL

3. 0.10 mole NaOH

0.500 L
$=0.20 \mathrm{~mole} \mathrm{NaOH}$
1 L

Learning Check M1

A KOH solution with a volume of 400 mL contains 2 mole KOH . What is the molarity of the solution?

1) 8 M
2) 5 M
3) 2 M

Solution M1

A KOH solution with a volume of 400 mL

 contains 2 moles of KOH . What is the molarity of the solution?$$
\begin{aligned}
& \text { 2) } 5 \mathrm{M} \\
& \mathrm{M}=\frac{2 \mathrm{~mole} \mathrm{KOH}}{0.4 \mathrm{~L}}=5 \mathrm{M}
\end{aligned}
$$

Learning Check M2

A glucose solution with a volume of 2.0 L contains 72 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If glucose has a molar mass of 180 . g/mole, what is the molarity of the glucose solution?

1) 0.20 M
2) 5.0 M
3) 36 M

Solution M2

A glucose solution with a volume of 2.0 L contains 72 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If glucose has a molar mass of 180 . g/mole, what is the molarity of the glucose solution?

1) $72 \mathrm{~g} \mathrm{x} \underline{1 \text { mole }} \mathrm{x} \underline{1}=0.20 \mathrm{M}$

 $$
180 . \mathrm{g} \quad 2.0 \mathrm{~L}
$$

Molarity Conversion Factors

A solution is a 3.0 M NaOH . Write the molarity in the form of conversion factors.

3.0 moles NaOH and $1 \mathbf{L ~} \mathrm{NaOH}$ soln 1 L NaOH soln

Learning Check M3

Stomach acid is a 0.10 M HCl solution. How many moles of $\mathbf{H C l}$ are in $1500 \mathbf{~ m L}$ of stomach acid solution?

1) $\mathbf{1 5}$ moles HCl
2) 1.5 moles HCl
3) 0.15 moles HCl

Solution M3

3) $1500 \mathrm{~mL} \times \xrightarrow{1 \mathrm{~L}}=1.5 \mathrm{~L}$ 1000 mL

$1.5 \mathrm{~L} \times 0.10$ mole $\mathrm{HCl}=\mathbf{0 . 1 5}$ mole $\mathbf{H C l}$ 1 L

(Molarity factor)

Learning Check M4

How many grams of KCl are present in 2.5 L of 0.50 M KCl ?

1) 1.3 g
2) 5.0 g

3) 93 g

Solution M4

3)

$2.5 \mathrm{~L} \times \underline{0.50 \text { mole }} \times \underline{74.6 \mathrm{~g} \mathrm{KCl}}=\mathbf{9 3} \mathbf{g ~ K C l}$ 1 L 1 mole KCl

Learning Check M5

How many milliliters of stomach acid, which is 0.10 M HCl , contain 0.15 mole HCl ?

1) 150 mL
2) 1500 mL
3) 5000 mL

Solution M5

2) 0.15 mole $\mathbf{H C l} \times 1 \mathrm{~L}$ soln $\times 1000 \mathrm{~mL}$ 0.10 mole HCl 1 L (Molarity inverted) $=1500 \mathrm{~mL} \mathrm{HCl}$

Learning Check M6

How many grams of $\mathbf{N a O H}$ are required to prepare 400 . mL of 3.0 M NaOH solution?

1) $\mathbf{1 2 g}$
2) $\mathbf{4 8} \mathrm{g}$
3) 300 g

Solution M6

2) $400 . \mathrm{mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.400 \mathrm{~L}$

$0.400 \mathrm{~K} \times \frac{3.0 \mathrm{~mole} \mathrm{NaOH}}{1 \mathrm{l}} \times \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mole} \mathrm{NaOH}}$
$=48 \mathrm{~g} \mathrm{NaOH}$

"Talk about trunk space, this beauty has thirteen cubic feet! That's enough room to hold more than sixteen moles of any gas at STP."

