Life Science

Chapter 1 Exploring and Classifying Life

What is Science?

- Science an organized way of studying things and finding answers to questions
- Science is about Critical thinking?
 - a process that uses certain skills to <u>solve</u>
 <u>problems</u>

Scientific methods

-an organized way to solve a problem using a series of procedures

Steps to the Scientific Method

- 1. State the problem.
- 2. Gather information.
- 3. Form a <u>hypothesis</u>, or a prediction that can be tested.
- 4. Test the hypothesis with <u>an experiment.</u>
 - a. <u>Variable</u> is something in an experiment that can change.
 - b. <u>Control</u> is the standard of comparison in an experiment; cannot change
- 5. Analyze <u>data.</u>
- 6. Draw <u>conclusions.</u>
- 7. Report <u>results</u>.

Five Main Steps ?

- Problem
- Hypothesis Possible Solution
- Experiment- Test hypothesis
- Conclusion Analyze data and draw conclusion
- Report

Discussion Question: Why is it important to form a hypothesis?

Theories and laws

- Scientific <u>theory-</u> an explanation of things or events based on scientific knowledge; the result of many observations and experiments
- Scientific <u>law</u> a statement about how things work in nature

Measurement

- Measurement is required in science
- In Science we use the SI System of measurement which is based on the Metric system.

Measurement & & SI System

I. The SI System is based mainly on the metric system. II. Reasons to use the metric system A.Based on 10 and multiples of 10

B. The Old English system is not based on any certain number or pattern

C.The metric system has basic terms that are used each measurement

- 1. All length use the meter
- 2. All masses use the gram
- 3. Volume uses the Liter, or cubed length

D.The metric system has six prefixes to these units thatdescribe how much of or how many of the unit there is.

- 1. milli 1/1000 or 0.001
- 2. centi 1/100 or 0.01
- 3. deci 1/10 or 0.1
- 4. deka 10
- 5. hecto 100
- 6. kilo 1000

E. To do metric conversions all you do is multiply or divide by 10, or move the decimal point.

Ō. mm

Metric Conversion Table

kilo	hecto	deka	unit	deci	centi	milli
1000	100	10	1	0.1	0.01	0.001

Move the decimal point the same direction as you count across the line. The unit is the gram, meter, or liter.

Abbreviations

Meter - m, Liter - L, Gram - g, Kilo - k, Hecto - h, Deka - da, Deci - d, Centi - c, Milli - m

Living Things

- How are living things, or <u>organisms</u>, alike?
 - Living things are <u>organized.</u>
 - <u>Cell-the</u> smallest unit of an organism that carries on the functions of life
 - Each <u>cell</u> has an orderly structure and contains hereditary material.
 - Living things <u>respond.</u>
 - <u>Stimulus-anything</u> that causes some change in an organism
 - Response-the way an organism reacts to a stimulus, often results in <u>move-ment</u>
 - <u>Homeostasis-maintaining</u> the proper conditions inside an organism
 - Living things use <u>energy.</u>
 - Living things grow and <u>develop.</u>
 - Growth of many-celled organisms is due to an increase in <u>the number of cells.</u>
 - Growth of one-celled organisms is due to an increase in the size of the cell.
 - <u>Development-changes</u> that take place during the life of an organism
 - Living things <u>reproduce.</u>

All living things have levels of organization

- 1. Cells together make tissues
- 2. Tissues together make organs
- 3. Organs together make systems
- 4. Systems together make complex organisms (There can be organisms at any level)

What do living things need?

- A <u>place to live</u> that provides for all of the organism's needs
- Raw materials, like water, proteins, fats, and sugars
- Discussion Question-
 - What do you have in common with a flower?

Exploring and Classifying Life

- Where does life come from?
- <u>Spontaneous generation-early</u> theory that living things could come from non-living things; disproved by Louis Pasteur in the mid-1800s

Where life comes from

 Spontaneous Generation - People once believed that living could come from nonliving.

Horse hair came alive in water.

Pasteur's Experiment

are 19-1 Spontaneous generation refuted

N N N N

Pasteur's experiment disproving the spontaneous generation of microorganisms in broth.

Biogenesis-theory

- The result of Pasteur's work is the theory of Biogenesis
 - "At this present time all living things come only from other living things."

Where did life originate?

- Oparan's Hypothesis
- Miller's experiment

Where did life originate

- Alexander I. Oparin's hypothesis on the origins of life-gases in Earth's early atmosphere combined to form <u>more complex compounds</u> found in living things.
 - gases:
 - ammonia
 - <u>Hydrogen</u>
 - <u>Methane</u>
 - <u>water vapor</u>

Stanley Miller and Harold Urey tested Oparin's hypothesis and showed thatchemicals found in <u>living things</u> could be produced.

Discussion Question

• Why didn't Miller and Urey's experiment prove Oparin's hypothesis?

Classification systems

- <u>Aristotle classified organisms more than</u> 2,000 years ago.
- Carolus Linnaeus introduced a system based on <u>similar structures</u> of organisms.
- Modern systems based on phylogeny-the evolutionary history of an organism

Today's classification system

- separates organisms into 6 kingdoms.
 - Kingdoms are the first and <u>largest</u> category.
 - The smallest classification category is a <u>species.</u>
 - Organisms that belong to the same species can mate and produce <u>fertile offspring</u>.

. Binomial nomenclature

- <u>-two-word</u> system used by Linnaeus to name species
 - 1. First word identifies the <u>genus</u>. or group of similar species.
 - It is the noun
 - 2. Second word tells something about the species-what it looks like, where it is found, or <u>who discovered it.</u>
 - Adjective
 - 3. Why use scientific names?
 - a. To avoid mistakes
 - b.To show that organisms in the same genus are related
 - c. To give <u>descriptive information</u>
 - d. To allow information to be. organized easily

*know why we use scientific names.

C. Tools for identifying organisms

- 1. <u>Field guides-descriptions and</u> illustrations of organisms
- 2. Dichotomous keys-detailed <u>lists</u> of identifying characteristics that include scientific names

Discussion Question

• How do scientific names show you that organisms are related?