Heredity

Genetics*

- the study of Genes and how they work
- This chapter is a lot about knowing your vocabulary

Genes

- Genes are found on DNA and DNA make up chromosomes
- Genes are the information about how a protein is to be made
- During meiosis pairs of chromosomes split so each sex cell has one form of a gene for each trait.
- Trait is the expressed gene
- The different forms a gene may have for a trait are called alleles.

Where are genes located?*

Chromosome

Gregor Mendel*

- Called the father of Genetics*
- He was a monk in a monastery
- Studied peas an inherited traits in the 1860's

Gregor Mendel

Gregor Mendel's Work

- Gregor found it curious how traits were passed from one generation to the next.
- Mr. Mendel used pea plants for his experiments.
- Gregor cross pollinated a purebred tall pea plant with a purebred short Pea plant This is called the parental cross
- The results of this cross were all tall peas.
- These are called the first generation cross or the f1 generation*
- What is the f_{1} generation?*

The F_{1} generation.

- Gregor crossed to tall pea plants from this first cross
- The results were 3 tall to one short
- These are called the second generation f_{2}
- Gregor then crossed a purebred short with a crossed tall
- Gregor found that $1 / 2$ of the offspring were Tall and $1 / 2$ of the offspring were short

What is the f_{2} generation?*

Mendel used math to figure out

 what was going on.- The use of probability to predict the possible results of a cross
- Probability is the mathematical likelihood that something will happen
- Examples:
- 1/6 chance that you will roll a six when you roll a dice
- When you flip a coin there is a 50% chance that you will roll heads and a 50% chance that you will roll tails
- probability can be applied to genetics

Probability

- The likelihood of a particular event occurring. Chance
- Can be expressed as a fraction or a percent.
- Example: coin flip.
- Heredity is a chance for each trait
(explain)

Terminology

- Homozygous*
- Heterozygous*
- Genotype*
- Phenotype*

Know what each of these terms mean.*

- Mendel said that the results were the result of dominant and recessive traits
- Dominant traits mask over the recessive*
- Letters are used to represent the different alleles
- Dominant traits are represented by capital letters and recessive are represented by lower case letter
- Most cells have two alleles for every trait
- If both alleles that an organism possess for a certain trait are the same they are homozygous TT, tt
- If an organism has alleles that are different they are heterozygous Tt

Punnett Square*

- We will us a punnett square to help us figure probabilities
- Example: If a heterozygous Tall, Tt, plant was crossed with another heterozygous Tt plant Tt $\times \mathrm{Tt}$

Be able to use the punnett square*

Genotype \& Phenotype

- Genotype is the genes that are present in the organism. Example TT, Tt or tt*
- Phenotype is how something looks on the outside, like Tall or short*

What is phenotype and what is genotype?

What Works for Peas Also Works for Humans

An albino woman

In the cross $A a \times A a$, where A is a dominant gene for (standard) pigmentation and a is a recessive allele for no pigmentation (albinism), $3 / 4$ of offspring will be normal and $1 / 4$ will be albino.

Incomplete dominance

- genes are neither dominant or recessive and they express themselves equally
- Example would be when red and white four-o-clocks were crossed they produced pink four-o-clocks
- RRxR'R'
- Equal expression of the genes
 (aa)
R' R'

R	$R R^{\prime}$	$R R^{\prime}$
R	$R R^{\prime}$	$R R^{\prime}$

Blood type \& incomplete dominance

- Type A and Type B blood are dominant to Type O blood If $\mathrm{AO} \times \mathrm{BO}$

B
O

A	$A B$	$A O$
O	$B O$	$O O$

- The resulting phenotypes would be one $A B$ to one $A O$ to one BO to one 00

Multiple Alleles

Many genes are present in 3 or more versions (alleles) - this is known as multiple alleles.

The human ABO blood group is determined by three alleles (I^{A}, I^{B}, and i) of a single gene.

A

B

AB

0

Codominance

The human ABO blood group illustrates another genetic phenomenon codominance.

Codominance occurs when the phenotype associated with each allele is expressed in the heterozygote.

A

B

The AB ab phenotype (genotype I^{A} I^{B}) is an example of codominance

0

Question

- Little Bobby's blood type is A
- His mom has type O
- What are two possible genotypes for his father?
- Hint:
- Punnett Squares
- We get half our alleles from one parent

Polygenic inheritance

- occurs when a group of gene pairs act together to produce a single trait
- Example; height, body build, shape of eyes, lips, ears, hair color, finger prints

Genetic Disorders

- Homozygous Recessive genetic disorders
- Sickle Cell Anemia
- Cystic Fibrosis

Name two homozygous recessive disorders.*

Cystic Fibrosis

- Most common U.S. lethal genetic disorder
- Recessive
- 1 in 25 Caucasians carries it
- A carrier if single allele
- Afflicted if two copies of allele
- Overly thick mucous

Dominant Disorders

- Single or both alleles will give disorder
- Some are lethal-how can these exist?
- Disorders occur late in life (after reproduction)
- Huntington's disease
- Some Alzheimers

How sex determination works

- You receive a sex chromosome from your father and a sex chromosome from your mother.
- The mother gives an X sex chromosome and the Father gives an X or a Y sex chromosome
- If you received an X chromosome from your dad you're a girl, if you received a Y chromosome from your dad you're a boy.

Sex linked disorders

- These are disorders that are linked to the X sex chromosome
- Males get the sex linked disorders most often

Ishihara Color Blindness Test Plate 1 Ishihara Color Blindness Test Plate 4

Ishihara Color Blindness Test Plate 2 Ishihara Color Blindness Test Plate 5

Ishihara Color Blindness Test Plate 3 Ishihara Color Blindness Test Plate 6

Examples of sex linked disorders

- These genetic disorders are caused by a recessive allele on the X chromosome
- Color blindness
- Hemophilia

Name two sex linked disorders.*

Example of a sex linked characteristic

- Color blindness if a woman who caries color blindness marries a normal man, what is the chance that their boy will be colorblind? $\mathrm{X}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}} \mathrm{X}$ $X_{N} Y$
- The results would be $1 / 2$ of the boys would be color blind

X_{n}	$X_{n} X_{n}$	$X_{n} Y$
X_{n}	$X_{n} X_{n}$	$X_{n} Y$

Pedigree

- is a tool used for tracing the occurrence of a trait in a family
- Page 140 in your book gives examples of pedigree

Be able to read a pedigree.*
\square normal male
\square whirling male O normal female whirling female

A family:
OO their three kids

