How Atoms Combine

Electrons and Compounds

- Atoms combine in such a way so that there electrons resemble a noble gas*
- The electrons involved in forming compounds are the outer electrons or valence electrons*

Chemical bonds & Electron Dot Model

- Atoms are held together by chemical bonds
- Electron dot model*
 - A model that uses the Symbol as the nucleus and puts dots around it to represent the electrons.
 - An electron dot model only uses the outer energy electrons*
- The outer electrons are <u>Valence electrons</u>

The Octet Rule

Atoms tend to gain, lose, or share electrons until they have eight valence electrons. *

Octet Rule

Noble Gas configuration

Duet Rule

• Hydrogen, Lithium, beryllium and Boron combine so that they have two valence electrons

Periodic Chart & Chemical Stability

 Elements form compounds (chemical bounds) for chemical stability*

Chemical Formulas

- Chemical formulas tell the elements present, and the ratios of the elements *
- A formula is represented by a symbol and the number of atoms present
 - Water H₂O, has two hydrogen to every one oxygen
 - Sodium chloride NaCl, 1:1
 - Iron III oxide Fe₂O₃, two iron to three oxygen
- Lewis Dot formulas for compounds

There are Two Kinds of chemical bonds

• Ionic *

Transfer of electrons

0

- Covalent *
 - Sharing of electrons

Ionic compounds

- An ion is an atom with a charge*
 - the charge is the result of electrons being lost or gained by an atom*
- The result of ions with opposite charges are held together
- In an ionic bond electrons are gained or lost*
 - An example of an ionic compound would be NaCl
 - Ionic bonds are generally the result of a metal combining with a nonmetal
- Ions are responsible for many things we observed and are involved in
 - Example would be nerve impulses

Molecules and Covalent bond

- a bond formed by sharing of electrons* Example – H₂O
- Covalent bonds are generally the result of two nonmetals combining

Polar and Non-polar Molecules

- Polar molecules are the result of uneven attractions of the electrons in a covalent bond.*
- If one atom pulls harder on the electron than another atom, there is a charge on each end of the molecule
 - An example of a polar molecule is water (p. 308)*
- Non-polar molecules have an equal attraction for the electrons

- An example would be O₂

a Li i Mushava af the Elemente

Oxidation Numbers

- Oxidation #s are the number of electrons gained lost or shared by an atom when it forms a chemical compound.*
- Assigning oxidation #s
 - Positive oxidation #s*
 - The # of electrons the element loses or shares to form a compound
 - Negative oxidation #s *
 - The number of electron gained or shared to form a compound

Oxidation # *

- Groups and their oxidation #s
 - Elements in group 1 have +1 oxidation #
 - Group 2 +2
 - Group 13 +3
 - Group 17 1
 - Group 16 2
 - Group 15 3
- Atoms combine in such a way that the sum of their oxidation #s = 0***

Balancing Formulas & Using Subscripts

- Subscripts used to balance the chemical combinations called <u>formulas*</u>
- Hydrogen has a +1 oxidation # Oxygen has a - 2 oxidation #.
 - To balance the formula, there must be 2 hydrogen to 1 oxygen
 - Example: H⁺¹ and O⁻² so it has to be written
 H₂O to balance the oxidation #s

More Balancing Formulas

- Iron III has a +3 oxidation # oxygen has an oxidation # of 2
 - The formula is Fe₂O₃
 - This gives you 2 +3 iron atoms to 3 2 oxygen atoms
 - When you multiply the subscript times the oxidation number together you get a +6 & - 6 which when added equal 0
 - Formulas are the symbols and the <u>subscripts*</u> together to show the ratio of the atoms that are combined
 - (subscripts show the ratios that the elements combine)

Naming Binary Chemical Compounds

- Name the positive oxidation element first*
- The name of the negative oxidation is second and the suffix ide is added*
 - Example: NaCl Sodium Chloride
 - Binary compounds end in ide
- When two elements that are nonmetal combine prefixes are many times used to tell you the # of atoms*
 - Example: CO₂ Carbon dioxide, CO Carbon monoxide

Polyatomic ions

- are a group of atoms acting together as on ion.*
 - Example CO₃⁻² carbonate, PO₄⁻³ Phosphate, NO₃⁻¹
 Nitrate, OH⁻ Hydrate
 - Most compounds with negative polyatomic ions in them end in ate

+1	-1	-2	-3
Ammonium, NH ₄ ⁺¹	Acetate, C ₂ H ₃ O ₂ ⁻¹	Carbonate, CO ₃ ⁻²	Phosphate, PO ₄ -3
	Chlorate, ClO ₃ ⁻¹	Sulfate, SO ₄ ⁻²	
	Hydroxide, OH ⁻¹		
	Nitrate, NO ₃ ⁻¹		

Chart of Polyatomic ions

Formulas with Polyatomic Ions

- Polyatomic formulas are written and balanced just like binary compounds*
- Example: aluminum sulfate Al₂(SO₄)₃
- Parentheses are used around the polyatomic ions when there is more than one ions needed to balance the equation*

Hydrated crystals

- are a compounds that have water molecules in them*
 - CuSO₄·5H₂O