

Organic chemistry

- Organic compounds are compounds that contain carbon
- Carbon forms many compounds because:
 - Carbon forms covalent bounds
 - Covalent bonds can be single, double, or triple
 - Bonds easily with many different elements
 - Halogens
 - Nitrogen
 - Oxygen
 - Hydrogen
 - Atoms other than carbon can be at different places in the carbon chain

Organic Compound Chemical Formulas

Formulas for organic compounds:
 Can be written the same as any other example:

Methane – CH_4 Ethane – C_2H_6

 Structural formulas are used to show a two dimensional shape

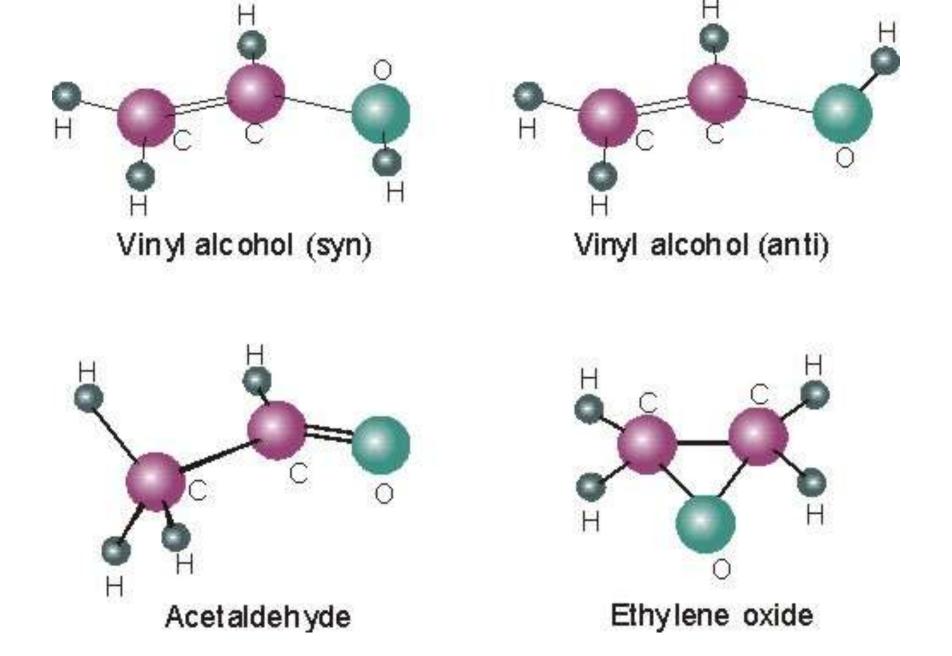
Structural Formulas

- Structural formulas show every atom and every bond
- Atoms are represented by their atomic symbol
- Bonds are represented by solid black lines.
- A single black line represents 2 shared electrons in a single covalent bond
- Two black lines represent 4 shared electrons in a double covalent bond
- Three black lines represent 6 shared electrons in a triple covalent bond

Common Name	Molecular Formula	Lewis Formula	Structural Formula
Methane	CH ₄	н н: С: н н	H H—C—H H
Ammonia	NH ₃	H :N : H :N : H	H H—N: H
Ethane	C_2H_6	н н н:с:с:н н н	H H H-C-C-H H H
Methyl Alcohol	CH ₄ O	н:с: <u>с</u> :н н	н—С— <u>ё</u> —н н
Ethylene	C_2H_4	н н С::С н н	н н С= < н н
Formaldehyde	CH ₂ O	н . с.: ö н	н)=ё
Acetylene	C_2H_2	н∶с∷с∶н	н−с≡с—н

Isomers

 Isomer – compounds which molecular formulas are the same, but have different structural formulas.
 Structural formulas show the arrangement of the


Example:
Butane

H - C - C - C - F

atoms

Isobutane

H-C-H H-C-H H-C-H These two compounds have much different properties

The more carbons present the more possible isomers there are.

Hydrocarbons

- A compound that contain only hydrogen and carbon
- Vary from methane to waxes

Two types of Hydrocarbons

- Saturated
- Contain only single carbon bond and are called <u>alkanes</u>
- Unsaturated Hydrocarbons
 - These have double and triple bonds
 - Double bounds are called <u>alkenes</u>
 - Triple bonds are called <u>alkynes</u>

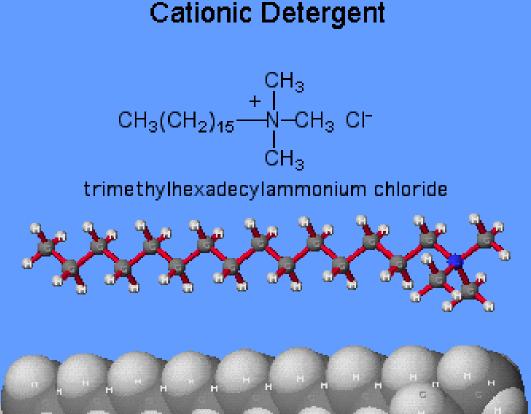
Saturated and unsaturated oils in our diet

- Unsaturated are oils
- Saturated are fats

Polymers

- Polymers are small organic molecules called monomers combined to form polymers
- Polymers make up most plastics and synthetic fibers: Dacron, nylon, polypropylene, polyvinyl chloride

Soap & detergents


Soap

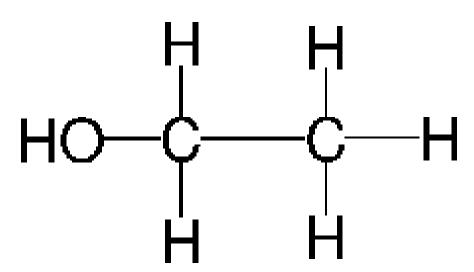
- Long chains of hydrocarbons with sodium or potassium at one end
- Soaps increase the cleaning ability of water
- Hydrocarbon in soap dissolves the grease and the metallic end of the molecule combine with the water and washes grease away
- Soaps are made by putting NaOH in fat or glycerol and then separating the results of reaction into bars.
- This process with oils makes liquid soap
- This process with fats makes solid bar soap Soaps can leave insoluble rings in a tub

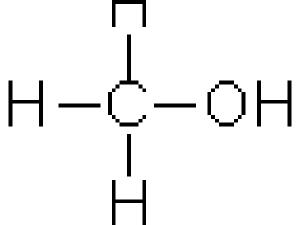
Detergents

 use a negative ion instead of a positive ion to attract to the water and do not form scum or rings when used in hard water

C. Ophardt, c. 2003

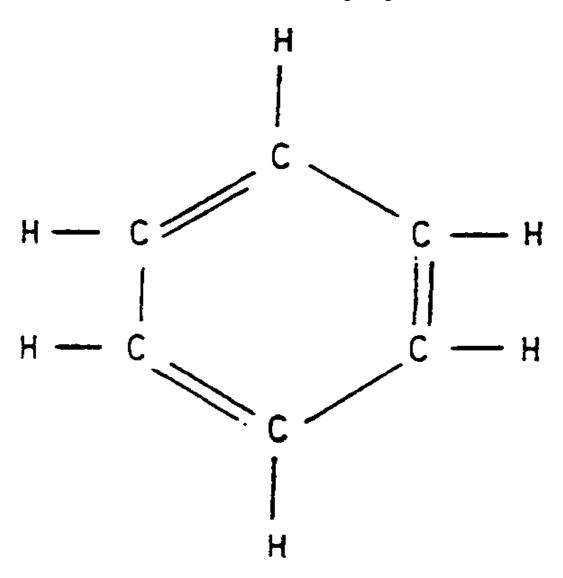
Petroleum


- mixture of hydrocarbons
- Crude oil the organic mixture of hydrocarbons pumped out of the ground
- Separated into its parts by fractional distillation
- Is the result of plant and animal life from the past
- Fossil fuels are burned when oxygen and the fuel are combined with an activator
- The results of this combination of a hydrocarbon and Oxygen is CO₂ & H₂O
 CH₄ + 2O₂ → CO₂ + 2H₂O


Substituted hydrocarbons

 Where another substance replaces the hydrogen Alcohols are an example of a

Alcohols are an example of a substituted hydrocarbon Methanol CH₃OH


Ethanol CH₅OH

Aromatic compounds

The Benzene ring C₆H₆

Biological compounds

- Proteins are a polymer of amino acid monomers
- Nucleic Acids
 - DNA double sided polymer of nucleotide monomers
 - RNA
- Carbohydrates Polymer of sugar monomers called monosaccharides
- Lipids Polymer from fatty acids and glycerol
 - Cholesterol waxy like fat found in the body that can build up in the arteries
- Pheromones Chemical that females of some species release to attract a male