Acids Bases and Salts

The Chemistry of Acids and Bases

Are Called Electrolytes

Acid and Bases

Acid and Bases

Acid and Bases

Acids

Have a sour taste. Vinegar is a solution of acetic acid. Citrus fruits contain citric acid.

React with certain metals to produce hydrogen gas.

React with carbonates and bicarbonates to produce carbon dioxide gas

Acids

* Compounds that contain hydrogen and releases the hydrogen ions when it is dissolved in water

Properties of Acids

- Taste sour
 - Never taste acids in the science lab!
- Electrolytes
- Corrosive
- Produce H+ ions in water
- H⁺ and the H₂O combine to form the H₃O⁺ ion (Hydronium Ion)
 - $+H_2O + H^+ \rightarrow H_3O^+$
- Any solution that contains H₃O⁺ is and Acid

Acid Strength

- The strength of and acid depends on how completely the compound ionizes in an water
 - (how many H+ are released)
- React with indicators to produce a color change

Common Acids

- Foods butter, vinegar, lemon juice, carbonated beverages
- Gastric juice Stomach acid
- Car batteries Sulfuric acid
- Muriatic Acid Hydrochloric Acid
- Sulfuric Acid
- H₂SO₄ Most widely used chemical in the world
 - Batteries
 - Fertilizer
 - Dehydrating agent

Acids

- Phosophoric Acid H₃PO₄
- Used in making fertilizer
- Used in making soft drinks
- Used in making detergents
- Causes water pollution by increasing the algae growing in an area

Acids

- Nitric Acid
- + HNO₃
- Used in making explosives
- Manufacturing of fertilizers

Hydrochloric Acid

- + HCI
- * A colorless gas dissolved in water
- Muriatic acid used to clean surfaces and remove corrosion
- Used to remove impurities off metals (Pickling)
- * The Acid your stomach uses to begin breaking down food

Naming Acids

- Composed of two elements, hydrogen and a nonmetal.
- Named with the prefix hydro, the name of the nonmetal, and the suffix ic
 - HCl is hydrochloric acid
 - HBr is hydrobromic acid
 - HF is hydrofluoric acid
- When naming a poly atomic acid the non oxygen part of the poly atomic ion is used to name the acid and ic is added
 - HNO₃ is nitric acid
 - H₂CO₃ is carbonic acid
 - H₂SO₄ is Sulfuric acid
 - H₃PO is Phosphoric acid

Organic acids

- Organic acids do not follow these rules for naming an acid
- CH₃COOH or HC₂H₃O₂ is acetic acid
- Citric Acid

lonization of acids

- When water ionizes it breaks up into hydronium and hydroxide
 2H₂O → H₃O⁺ + OH ⁻
- If there are more H₃O+ Ions present in a solution it is an acid solution
- If there are more OH- ions present than H₃O+then the solution is a Base
- When there is the same number of H₃O+ as OH- the solution is neutral
- $\bullet H_3O^+ + OH^- \rightarrow 2H_2O$

Bases

- Compounds that contain hydroxide and release OH⁻ in a solution by dissociation
- Properties of Bases
 - Bitter
 - Don't taste bases in the science lab either!
 - Slippery to the touch
 - Dissolve fats, oils and proteins;
 - Produce OH⁻ in water
 - React with acid to neutralize the solution
 - Electrolytes
 - React with indicators

Common bases

- Soaps
- Nonmetal base NH₃ + H₂0 → NH₄OH
- Metallic Hydroxides most bases are metal hydroxides
- Sodium Hydroxide NaOH Caustic Soda (Drain Cleaner)
- Calcium Hydroxide Ca(OH)⁻² Caustic
- Lime (Used in Plaster)
- Magnesium hydroxide Mg(OH)₂

Ionization

When you put a acid compound in water it ionizes
 HCl + H₂O → H⁺ + H₂O + Cl → H₃O⁺ + Cl →

Dissociation

 Base compounds dissociate when they are placed in water
 NaOH → Na⁺ + OH ⁻

Acid anhydrids

- A compound that forms and acid with the water
- Non metal oxides
 - -CO₂ + H₂O → H₂CO₃ which will further ionize into H⁺ + CO₃⁻²
 - -SO₃ + H₂O → H₂SO₄ which further ionizes

Base anhydrids

- *A compound that forms a base when it combines with H₂O
- Metal Oxides
 - Na₂O + H₂O → 2NaOH which will further dissociates into Na⁺ & OH ⁻

Strength of Acids or Bases

- The strength of an acid depends on how completely it will ionize in H₂O
- \bullet HCl + H₂O \rightarrow H₃O⁺ + Cl
- Hydrochloric acid ionizes completely in water
- The strength of a base depends on how completely it dissociates in water NaOH → Na⁺ + OH
- Since the water is only involved in breaking apart the ions it is not expressed in the equation

- Give the appropriate name or formula for the following acids.
 - Hydroiodic Acid
 - HF
 - Hydrobromic Acid
 - Nitric Acid
 - H₂SO₄
- Describe each of the acids in question #1 as either binary or ternary.
- Give the appropriate name or formula for the following bases.
 - Sodium Hydroxide
 - $-Ba(OH)_2$
 - $Fe(OH)_3$
 - Copper (II) Hydroxide
 - Tin (IV) Hydroxide

pH Scale

- The strength of an acid or a base is expressed in pH (Stands for the negative log of the H+ concentration)
- An acid has a high H+ concentration, and so it has a low pH
- An acid pH is form 0 7
- A base has a low H+ concentration so it has a high pH
- A Base pH range from 7 14
- A neutral solution is 7

Indicators

- * Indicators turn color in acid or basic solutions
 - Litmus paper
 - blue turn red in acid
 - +red turn blue in a base
 - Phenolphthalein turns pink in a base and clear in and acid
 - Bromothymol blue is blue in a base and clear in an acid
 - Red cabbage juice and tea change color in an acid or a base

Neutralization

- Salt and water is the result of mixing an acid and a base together
- NaOH + HCl → NaCl + H₂O, Salt and water is the result of neutralization
- *Salts are a ionic compound of a metal and a nonmetal NaCl, BaSO₄, CaCO₃, MgSO₄

Salts

Metal and a nonmetal ionically combined.

- NaCl
- -BaCO₃
- AgCl
- MgSO₄

Soaps and Detergents

- Soaps are organic salts made from a fat or oil combined to a positive ion
- * The process of making soap is soaponification
- Detergents are made from a hydrocarbon and a negative ion

Organic Acids and Esters

- ♣ Esters are formed from combining an organic acid with an alcohol
- * Ester form naturally in nature to give fragrance (Which is involved in taste)

Our Acid, Base, Salt Sensor

- Your Tongue
 - Sour Acids
 - Bitter Bases
 - Salty Salts
 - Sweet Sugars