为

正

(ab

4

1

Are Called Electrolytes

Acid and Bases

Acid and Bases

α-carbon

Glycine is representative of the amino acids that are the basis of proteins. The $-\mathrm{CO}_{2} \mathrm{H}$ group is the acid portion of the molecule, and the $-\mathrm{NH}_{2}$ group is the basic portion. (Charles D. Winters)

Acid and Bases

Acids

Have a sour taste. Vinegar is a solution of acetic acid. Citrus fruits contain citric acid.

React with certain metals to produce hydrogen gas.
React with carbonates and blearbonates to produce carbon dioxide gas

Acjols

- Compounds that contain hydrogen and releases the
hydrogen ions when it is dissolved in water

Properties of Acids

+ Faste sour
- Never taste acjads in the scjence labl
+ Electrolytes
+ Corrosive
- Produce H+ ions in water
+ H^{+}and the $\mathrm{H}_{2} \mathrm{O}$ combine to form the $\mathrm{H}_{3} \mathrm{O}^{+}$ion (Hydronium Ion)

$$
+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}
$$

+ Any solution that contains $\mathrm{H}_{3} \mathrm{O}^{+}$ is and Acid

Acid Strength

The strength of and acid depends on how completely the compound ionizes in an water + (how many H+ are released)

- React with indicators to produce a color change

Common Acjols

* Foods - butter, vinegar, Jemon juice, carbonated beverages
- Gastric juice - Stomach acid
* Car batteries - Sulfuric acid
- Muriatic Acid - HydrochJoric Acid
+ Sulfuric Acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}-$ Most widely used chemical in the world
- Batteries
- Fertilizer
- Dehydrating agent

Acids

+ Phosophoric Acjd $\mathrm{H}_{3} \mathrm{PO}_{4}$
- Used in making fertiljzer
+ Used in making soft drinks
- Used in making detergents
+ Causes water pollution by increasing the algae growing in an area

Acids

ANitric Acid
$+\mathrm{HNO}_{3}$

- Used in making explosives

4 Manufacturing of fertillizers

Hydrochloric Acid

AHCJ

- A colorless gas dissolved in water
- Muriatic acid used to clean surfaces and remove corrosion
+ Used to remove impurities off metals (Pickling)
* The Acid your stomach uses to begin breaking down food

Naming Aciols

- Composed of two elements, hydrogen and a nonmetal,
- Named with the prefix hydro, the name of the nonmetal, and the suffix le
- HG is hydrochloric acid
- HBr is hydrobromic acid
- HF is hydrofluoric acid
* When naming a poly atomic acjd the non oxygen part of the poly atomic lon is used to name the acid and lc is added
- HNO_{3} is nitric acid
- $\mathrm{H}_{2} \mathrm{CO}_{3}$ is carbonic acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ is Sulfuric acid
- $\mathrm{H}_{3} \mathrm{PO}$ is Phosphoric acid

Organje acjols

- Organic acids do not follow these rules for naming an acid
$+\mathrm{CH}_{3} \mathrm{COOH}$ or $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is acetic acid
- Citrićc Acid

Jonjzation of acjols

* When water jonjzes fu breaks up jnto hydronium and hydroxide $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- If there are more $\mathrm{H}_{3} \mathrm{O}+$ Ions present in a solution it is an acid solution
* If there are more OH-jons present than $H_{3} O$ then the solution is a Base
4 When there is the same number of $\mathrm{H}_{3} \mathrm{O}+$ as OH the solution is neutral
$+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Bases

* Compounds that contalin hydroxide and release OH in a solution by dissociation
- Properties of Bases
- Bitter
- Don't taste bases in the science lab ejither!
- Slippery to the touch
- Dissolve fats, oils and proteins;
- Produce OH in water

R React with acid to neutralize the solution
$x=$ Electrolytes

- React with indicators

common bases

+ Soaps
+ Nonmetal base $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{NH}_{4} \mathrm{OH}$
+ Metallic Hydroxicles most bases are metal hydroxides
- Sodium Hydroxide NaOH Caustic Soda (Drain Cleaner)
4 Calcium Hydroxide Ca(OH)-2 Caustic
* Lime (Used in Plaster)
* Magnesium hydroxide Mg(OH) 2

Jonjzation

- When you put a acid compound in water it jonjzes
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CJ}-\rightarrow$
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}-$

Dissociation

A Base compounds dissociate when they are placed in water $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Acjol anhyodrids

A compound that forms and acid with the water

- Non metal oxides
$-\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ which will further ionize into $\mathrm{H}++\mathrm{CO}_{3}^{-2}$
$-\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ which further ionizes

Base anhydrids

A compound that forms a base when it combines with $\mathrm{H}_{2} \mathrm{O}$

- Metal Oxides
$-\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ which will further dissociates into $\mathrm{Na}+\mathrm{E}_{\mathrm{o}} \mathrm{OH}=$

Strength of Acids or Bases

4 The strength of an acjd depends on how completely ft will jonjze fn flo

+ $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}+\mathrm{CJ}$
4 Hydrochloric acjel jonjzes completely in water
- The strength of a base depends on how completely tit dissoclates in water $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
+ Since the water is only involved in breaking apart the jons it is not expressed in the equation
+ Give the appropriate name or formula for the following acids. - Hydroiodic Acid
- HF
- Hydrobromic Acid
- Nitric Acid
$-\mathrm{H}_{2} \mathrm{SO}_{4}$
- Describe each of the acids in question \#1 as either binary or ternary.
- Give the appropriate name or formula for the following bases. following bases.
- Sodium Hydroxide
- $\mathrm{Ba}(\mathrm{OH})_{2}$
- Fe(OH)
- Copper (II) Hydroxide
- Tin (IV) Hydroxide

d

$4 \operatorname{laten}$

$$
\pi
$$

\qquad

$$
\theta
$$

\qquad ${ }^{4}$

\qquad

$$
5
$$

pH Scale

* The strength of an acjd or a base is expressed in ph (stands for the negative log of the Ht concentration)
+ An acid has a high H+ concentration, and so tit has a low pH
+ An acid phlis form 0 - 7
* A base has a low H+ concentration 90 it has a high pH
4 A Base pH range from 7 - 14
+ A neutral solution is 7

Indicators

+ Indicators turn color in acid or basic solutions
- Litmus paper
+ blue turn red jn acjd
+ red turn blue jn a base
- Phenolphthalein turns pinks in a base and clear in and acid
- Bromothymol blue is blue in a base and clear in an acid
- Red cabbage juice and tea change color in an acid or a base

Neutidjzation

\& Salt and water is the result of mixing an acid and a base together
$+\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}, \mathrm{Salt}$ and water is the result of neutralization

- Salts are a ionic compound of a metal and a nonmetal $\mathrm{NaCl}_{,} \mathrm{BaSO}_{4 /} \mathrm{CaCO}_{3 /} \mathrm{MgSO}_{4}$

Sallis

a Metal and a nonmetal ionically combined.

$-\mathrm{NaCl}$
$-\mathrm{BaCO}_{3}$
$=\mathrm{AgCl}$
$-\mathrm{MgSO}_{4}$

Soaps and Detergents

- Soaps are organic salts made from a fat or ofl combined to a positive ion
The process of making soap is soaponification
- Detergents are made from a hydrocarbon and a negative jon

Organic Acids and Esters

Asters are formed from combining an organic acid with an alcohol
A Ester form naturally in nature to give fragrance (Which is involved in taste)

Our Acid, Base, Salt Sensor

- Your Tongue
- Sour - Acids
- Bitter - Bases
- Salty - Salts
- Sweet - Sugars

