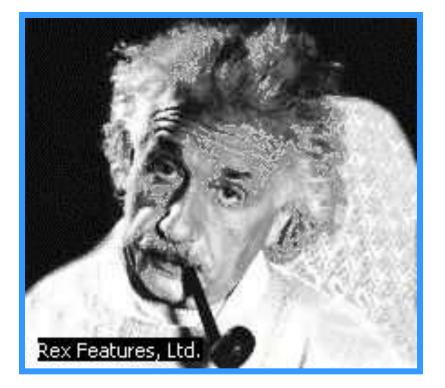
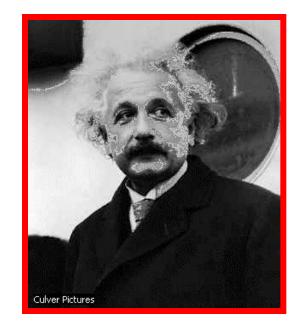
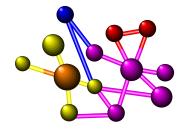
### Light


### LIGHT: What Is It?

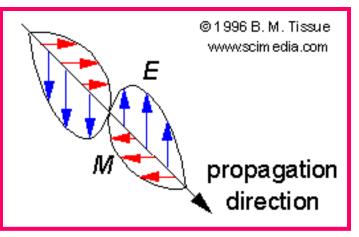

#### • Light Energy

- Photons are bundles/packets of energy released when the electrons fall
  - Streams of Photons
  - How light energy is released
    - Atoms
      - » As atoms absorb energy, electrons jump out to a higher energy level.
      - » Electrons release light when falling down to the lower energy level.
- Electromagnetic wave because it can be created with electricity and magnetism.

#### Albert Einstein


• Helped define and describe light



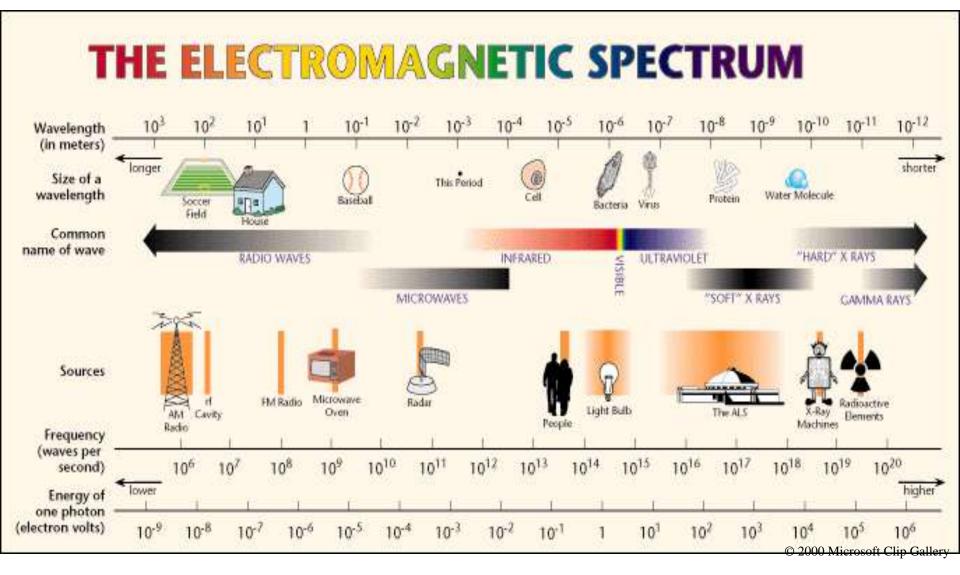



### Speed of Electromagnetic Waves

- Speed in Vacuum
  - Measured by Danish astronomer Olaus Roimer .
  - -300,000 km/sec
  - 186,000 mi/sec
- Speed in Other Materials
  - Slower in Air, Water, Glass



© 2000 Microsoft Clip Gallery




Electromagnetic waves are Transverse Waves

© 2000 Microsoft Clip Gallery

- Energy is perpendicular to direction of motion
- Moving photon creates electric & magnetic field
  - Light has BOTH Electric & Magnetic fields at right angles!

## Electromagnetic Spectrum



### Describing the Electromagnetic Spectrum

- They all travel the same speed
- Have different wave lengths and frequencies

#### Electromagnetic Spectrum

- Invisible Spectrum
  - -Radio Waves
    - Def. Longest wavelength & lowest frequency.
    - Uses Radio & T.V. broadcasting.



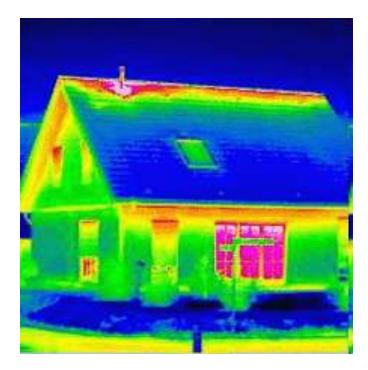
#### Radio waves

- Radio waves
  - Low energy and low frequency waves
  - AM are the longest and lowest frequency waves
    - 1) Amplitude modulaton
    - 2) 535 kiloHz to 1605 kiloHz
  - -FM
    - 1) Frequency Modulation
    - 2) 88 mega Hz to 107.9 megaHz

### Modulating Radio Waves

- Modulation variation of amplitude or frequency when waves are broadcast
  - AM amplitude modulation
    - Carries audio for T.V. Broadcasts
    - Longer wavelength so can bend around hills
  - FM frequency modulation
    - Carries video for T.V. Broadcasts

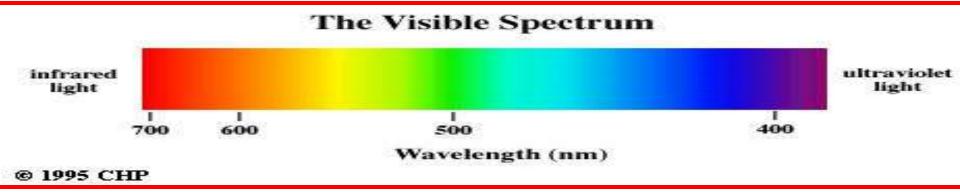



### Short Wavelength Radio & Infrared

#### • Microwave

- Used for transmitting telephone Messages
- Cooking food.

#### • Infrared Rays


- Def Light rays with longer wavelength than red light.
- Uses: Cooking, Medicine, T.V. remote controls
- All objects give off some infrared radiation
- Used to warm food
- Used in thermograms
- Used to track things in fog in darkness



#### Visible Spectrum

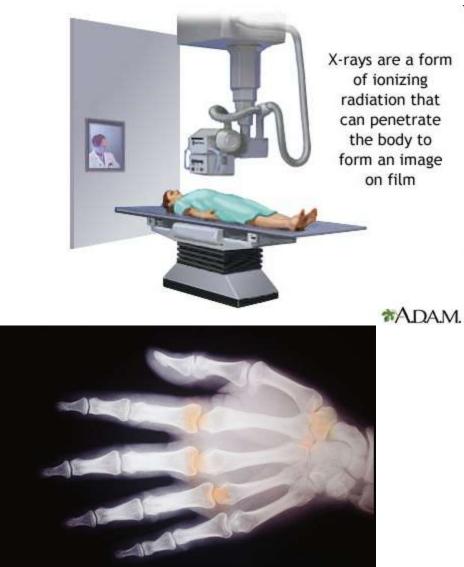
 Visible Spectrum – Light we can see

 ROY G. BIV – Acronym for Red, Orange, Yellow, Green, Blue, Indigo, & Violet.
 Longest to Shortest Visible wavelength.



#### Ultraviolet

- Ultraviolet rays.

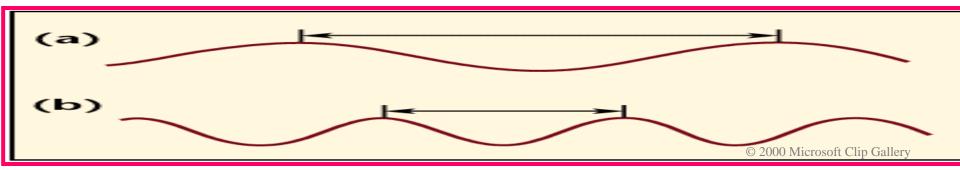

- EM waves with frequencies slightly higher than visible light
- Uses: food processing & hospitals to kill germs' cells
- Helps your body use vitamin D.
- Present in the sunlight and causes the skin to tan and to burn
- Over exposure kills cells

#### X-Ray

#### -X-Rays

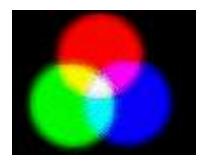
- Def. EM waves that are shorter than UV rays.
- Uses: Medicine

   Bones absorb
   x-rays; soft
   tissue does not.
- Lead absorbs X-rays.



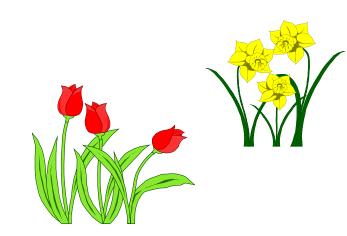

#### Gamma Ray

- Gamma rays
  - Def. Highest frequency EM waves; Shortest wavelength. They come from outer space.
  - Uses: cancer treatment.


#### LIGHT: Particles or Waves?

- Light as a wave
  - Wave Model of Light
    - Explains most properties of light
    - Light has interference pattern
- Light as a Particle
  - Particle Theory of Light
    - Photoelectric Effect Photons of light produce free electrons




## Light

- Transparent Objects:
  - Light transmitted because the electron configuration allows light to pass through
  - Color transmitted is color you see. All other colors are absorbed.
- Translucent:
  - Light is scattered and transmitted some.
- Opaque:
  - Light is either reflected or absorbed.
  - Color of opaque objects is color it reflects.
  - Are opaque objects different colors?



## Color of Light

- Color of Objects
  - White light is the presence of ALL the colors of the visible spectrum.
  - Black objects absorb ALL the colors and no light is reflected back.



## Color of Light

- Primary Colors of Light
  - Three colors that can be mixed to produce any other colored light
  - Red + blue + green = white light
- Complimentary Colors of Light

   Two complimentary colors combine
   to make white light-Magenta, Cyan, Yellow

# LIGHT: Refraction of Light



- Refraction Bending of light due to a change in speed.
  - Index of Refraction Amount by which a material refracts light.
  - Prisms Glass that bends light. Different frequencies are bent different amounts & light is broken out into different colors.

## Refraction



#### The Human Eye

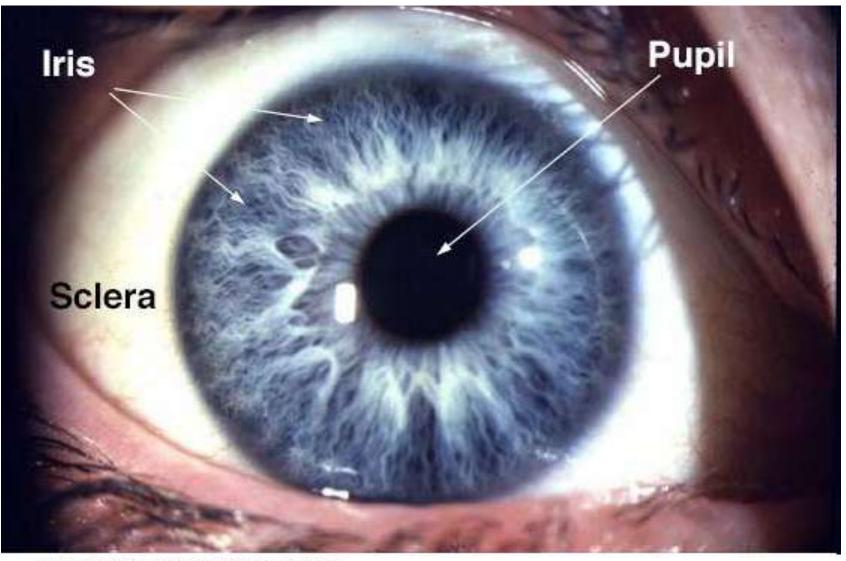
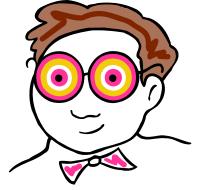
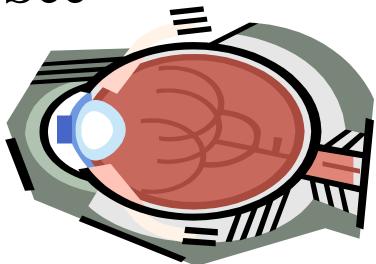
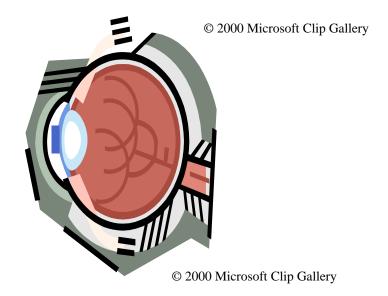




Fig. 1. View of the human eye

### How You See


- Retina
  - Lens refracts light to converge on the retina.
     Nerves transmit the o image
- Rods
  - Nerve cells in the retina. Very sensitive to light & dark
- Cones
  - Nerve cells help to see light/color






#### How You See

- Near Sighted Eyeball is too long and image focuses in front of the retina
- Far Sighted Eyeball is too short so image is focused behind the retina.





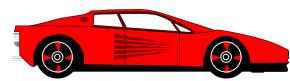
### Paint Pigments

 Pigments absorb the frequency of light that you see

- Primary pigments
  - Yellow + Cyan + Magenta = black
  - Primary pigments are compliments of the primary colors of light.

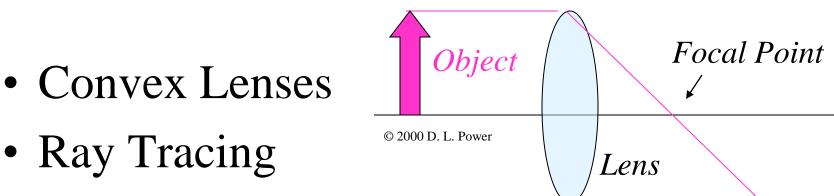
#### Reflection

- Reflection Bouncing back of light waves
  - Regular reflection mirrors smooth surfaces scatter light very little. Images are clear & exact.
  - Diffuse reflection reflected light is scattered due to an irregular surface.


#### Mirrors

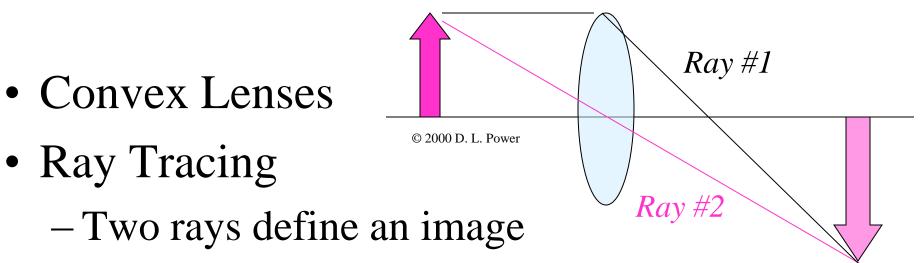
- Plane Mirrors Perfectly flat
  - Virtual Image is "Not Real" because it cannot be projected

#### Mirrors

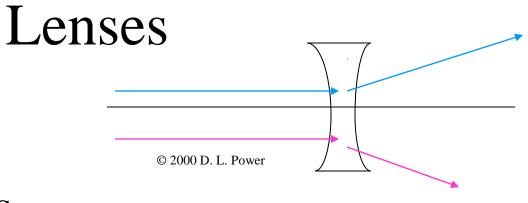

- Reflection & Mirrors (Cont.)
  - -Convex Mirror
    - Curves outward
    - Enlarges images.
  - -Use: Rear view mirrors, store security...

CAUTION! Objects are closer than they appear!




<sup>© 2000</sup> Microsoft Clip Gallery

- Convex Lenses
  - Thicker in the center than edges.
  - -Lens that converges (brings together) light rays.
  - Forms real images and virtual images depending on position of the object




– Two rays usually define an image

• Ray #1: Light ray comes from top of object; travels parallel to optic axis; bends thru focal point.

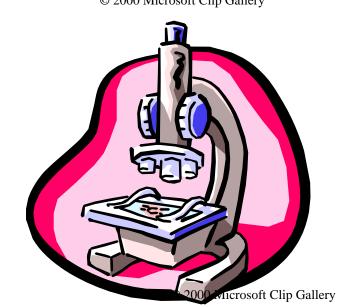


• Ray 2: Light ray comes from top of object & travels through center of lens.



- Concave Lenses
  - Lens that is thicker at the edges and thinner in the center.
  - Diverges light rays
  - All images are erect and reduced.

- Concave Lenses
  - Vision Eye is a convex lens.
    - Nearsightedness Concave lenses expand focal lengths
    - Farsightedness Convex lenses shortens the focal length.


#### **Optical Instruments**

- Cameras
- Telescopes
- Microscopes



© 2000 Microsoft Clip Gallery

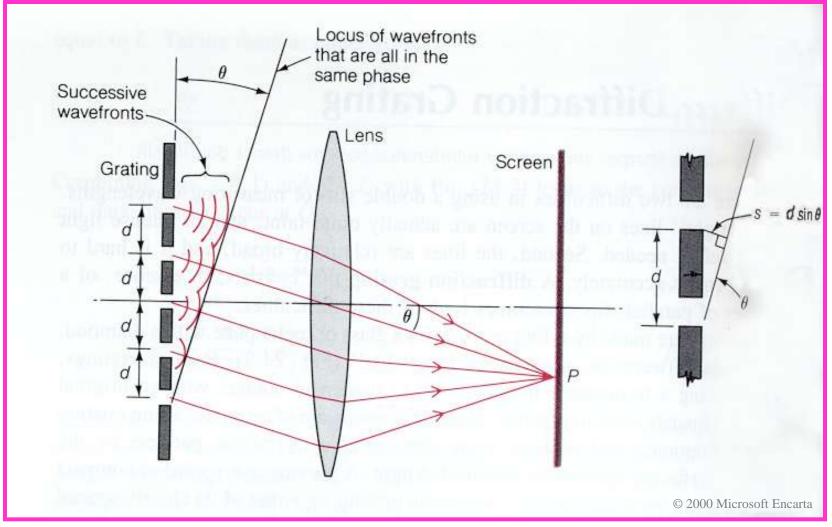




#### **Optical Instruments**

- LASERS
  - Acronym: Light
    Amplification by
    Stimulated Emission of
    Radiation
  - Coherent Light Waves are in phase so it is
     VERY powerful & VERY intense.




#### **Optical Instruments**

- LASERS
  - Holography Use of Lasers to create 3-D images
  - Fiber Optics Light energy transferred through long, flexible fibers of glass/plastic
  - Uses Communications, medicine, t.v. transmission, data processing.

#### Diffraction

- Diffraction Bending of waves around the edge of a barrier. New waves are formed from the original. breaks images into bands of light & dark and colors.
- Refraction Bending of waves due to a change in speed through an object.

### Diffraction



• A diffraction grating. Each space between the ruled grooves acts as a slit. The light bends around the edges and gets refracted.

### Light & Color

- Light and matter
- Materials
  - Opaque materials are materials that absorb or reflect light
  - Translucent materials are materials that let some light through but you can't see clearly through it
  - Transparent means allows light to pass through so that you can see clearly through it

#### Vision and seeing color

- We have cones in out eyes that see red green and blue
  - When the colors are focused on our retina we are able to see things in the right shape and color
  - Color Blindness is the lack of the proper cones in your eye

### Brightness of light

- a. SI unit of brightness is the lux
- b. 1000 lux is needed for comfortable reading
  - 1) 0.2 joules of light energy/second
- c. The energy of the lux depends on the color of the light

#### Models of light

• A. *Isaac Newton* 1672 said that light is a steam of tiny particles

B. *Christian Huygen* found that light is a wave, because one beam of light can pass through another without disturbance

C. *Thomas Young* in 1804 showed that light has constructive and destructive interference which proved it to be a wave

D. *Albert Einstein* in 1905 said that energy form light comes out in tiny packages of energy called photons

E. It is now known that light is photons that travel in a wave pattern