Leceleration and Momentum

Time: 0.00 hrs .

NaHion'sseconillay-

© a net force on an object causes acceleration
ρ Force Equation

- Force $=$ mass X acceleration
- F=ma
- Newton = kg x m/s ${ }^{2}$
- Gravity is a force that causes things to accelerate toward the earth
- All things accelerate toward the earth at 9.8 $\mathrm{m} / \mathrm{s}^{2}$

O If F=ma, then a one kg object exerts a 9.8 Newton downward

- Air causes things to accelerate at a slower rate toward the earth
© Air is a fluid that resist motion
-The faster something moves through air the greater the air friction
- Force upward due to air friction increases as velocity increases
- Terminal velocity is when a falling object quits acceleration do to the force of air friction upward equaling the force of gravity downward
- Projectile - anything thrown, shot or propelled through the air
© All projectiles have to components to their motion
- All projectiles have motion horizontal to the earth's surface
\Rightarrow All projectiles are acceleration toward the earth at $9.8 \mathrm{~ms}^{2}$
- These two components cause all projectiles to travel on a curved path (internet site)
O Canon firing
© Centripetal acceleration - Any force that causes the acceleration in a curved path
\geqslant Centripetal force is the force acting toward the center of a curved path
\ominus There must be centripetal force before and object can accelerate toward the center or around a curve

Centripetal Acceleration

Acceleration toward the

 (O)
Centripetal Acceleration

For an object to travel in a

 curved path, some force must be accelerating it toward the center of the circle.
Centripetal Acceleration

Force provided by engine

Centripetal Acceleration

What happens if the accelerating force is removed

Centrifugal Force

An apparent force that appears only in rotating frames of reference.

Centrifugal Force

This "false" force appears to push away from the center of the circular path.

changes

WeInitiossicss

ρ in orbit is really freefall on a curved path around the earth

\rightleftharpoons Objects put up in orbit by man
\rightleftharpoons Objects have to reach a certain velocity before it will stay in orbit
\quad Speed depends on how high above earth's surface the satellite orbits.

- Speed of orbit is about $29,000 \mathrm{~km} / \mathrm{hr}$
\ominus Geostationary satellites seem to move the same speed as the earth's rotation
© Satellites fall because the horizontal velocity decreases

Nouton'stilnilaw ofmotion-

© to every force there is an equal and opposite force

- Action reaction Forces
- Rocket Propulsion is the result of action reaction

Take a look at these pictures, they are an example of Newton's third law. As you can see it is just some guy hitting another guy but what you might not see is Newton's third law. Each guy hitting the other one is feeling the same amount of force they apply. So the hockey player has to turn his feet sideways to stop himself from bouncing back. And the guy hitting the glass will bounce back because the glass to is applying the same amount of force exerted on it.

wr. Saniozts early experience

© Getting wood w/my dad
© Turned out to be one of my first realizations about what we are going to talk about today.

Before jumping out of the pickup moving less than 5 mph .

- I had jumped out of the pickup many times when it wasn't moving
- How do you think jumping out while the truck was moving was different than jumping out while it was stationary.?

After jumping out of the pickup moving at about 5 mph

What do you think caused me to fall down on my back and hit my head?

Womentinl-

\Rightarrow mass on the move
\rightarrow Momentum $=$ mass X velocity
$\Rightarrow \mathrm{P}=\mathrm{m} \mathbf{x} \mathbf{v}$

- Law of Conservation of Momementum Total momentum does not change

Pease Newion stip Your lew!

Inerita

Ineriti

is the same -

before and af a collision

Pendulum
 Does a long pendulum swing
 faster than/ a short one?

Does a heayy pendulum swing
faster than a light one?

The total momentum of

 any group of objects remains the same unless acted on by outside forces.

If the boulder and the boy have the same momentum, will the boulder crush the boy?

Hint: Which would have the larger speed?

Fatherand Dammer

Force = mass X acceleration

